{"title":"非线性朗道阻尼和格夫里正则性","authors":"Christian Zillinger","doi":"10.1016/j.na.2025.113875","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we study the problem of nonlinear Landau damping for the Vlasov–Poisson equations on the torus. We introduce <em>anisotropic Gevrey spaces</em> as a new tool to capture the time- and frequency-dependence of resonances. In particular, we show that for small initial data of size <span><math><mrow><mn>0</mn><mo><</mo><mi>ϵ</mi><mo><</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> and time intervals <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mi>N</mi></mrow></msup><mo>)</mo></mrow></math></span> with <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> arbitrary but fixed, nonlinear stability holds in regularity classes larger than Gevrey-3, uniformly in <span><math><mi>ϵ</mi></math></span>. As a complementary result we construct families of Sobolev regular initial data which exhibit nonlinear Landau damping. Our proof is based on the methods of Grenier, Nguyen and Rodnianski (Grenier et al., 2021).</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113875"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nonlinear Landau damping and Gevrey regularity\",\"authors\":\"Christian Zillinger\",\"doi\":\"10.1016/j.na.2025.113875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we study the problem of nonlinear Landau damping for the Vlasov–Poisson equations on the torus. We introduce <em>anisotropic Gevrey spaces</em> as a new tool to capture the time- and frequency-dependence of resonances. In particular, we show that for small initial data of size <span><math><mrow><mn>0</mn><mo><</mo><mi>ϵ</mi><mo><</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> and time intervals <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mi>N</mi></mrow></msup><mo>)</mo></mrow></math></span> with <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> arbitrary but fixed, nonlinear stability holds in regularity classes larger than Gevrey-3, uniformly in <span><math><mi>ϵ</mi></math></span>. As a complementary result we construct families of Sobolev regular initial data which exhibit nonlinear Landau damping. Our proof is based on the methods of Grenier, Nguyen and Rodnianski (Grenier et al., 2021).</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"260 \",\"pages\":\"Article 113875\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001294\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001294","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究环面上Vlasov-Poisson方程的非线性朗道阻尼问题。我们引入各向异性格夫里空间作为捕获共振的时间和频率依赖性的新工具。特别是,我们证明了对于大小为0<;ϵ<;ϵ0(N)的小初始数据和N∈N任意但固定的时间间隔(0,λ−N),非线性稳定性在大于gevry -3的正则类中保持一致,并且在λ中保持一致。作为补充结果,我们构造了具有非线性朗道阻尼的Sobolev正则初始数据族。我们的证明基于Grenier, Nguyen和Rodnianski (Grenier et al., 2021)的方法。
In this article we study the problem of nonlinear Landau damping for the Vlasov–Poisson equations on the torus. We introduce anisotropic Gevrey spaces as a new tool to capture the time- and frequency-dependence of resonances. In particular, we show that for small initial data of size and time intervals with arbitrary but fixed, nonlinear stability holds in regularity classes larger than Gevrey-3, uniformly in . As a complementary result we construct families of Sobolev regular initial data which exhibit nonlinear Landau damping. Our proof is based on the methods of Grenier, Nguyen and Rodnianski (Grenier et al., 2021).
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.