李普希茨空间上泛函的德列表示

IF 1.3 2区 数学 Q1 MATHEMATICS
Ramón J. Aliaga , Eva Pernecká , Richard J. Smith
{"title":"李普希茨空间上泛函的德列表示","authors":"Ramón J. Aliaga ,&nbsp;Eva Pernecká ,&nbsp;Richard J. Smith","doi":"10.1016/j.na.2025.113851","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> be the space of Lipschitz functions on a complete metric space <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span> that vanish at a point <span><math><mrow><mn>0</mn><mo>∈</mo><mi>M</mi></mrow></math></span>. We investigate its dual <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> using the De Leeuw transform, which allows representing each functional on <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> as a (non-unique) measure on <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span>, where <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the space of pairs <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mi>M</mi><mo>×</mo><mi>M</mi></mrow></math></span>, <span><math><mrow><mi>x</mi><mo>≠</mo><mi>y</mi></mrow></math></span>. We distinguish a set of points of <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span> that are “away from infinity”, which can be assigned coordinates belonging to the Lipschitz realcompactification <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> of <span><math><mi>M</mi></math></span>. We define a natural metric <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> on <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> extending <span><math><mi>d</mi></math></span> and we show that optimal (i.e. positive and norm-minimal) De Leeuw representations of well-behaved functionals are characterised by <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-cyclical monotonicity of their support, extending known results for functionals in <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, the predual of <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>. We also extend the Kantorovich–Rubinstein theorem to normal Hausdorff spaces, in particular to <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span>, and use this to characterise measure-induced and majorisable functionals in <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> as those admitting optimal representations with additional finiteness properties. Finally, we use De Leeuw representations to define a natural L-projection of <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> onto <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> under some conditions on <span><math><mi>M</mi></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113851"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De Leeuw representations of functionals on Lipschitz spaces\",\"authors\":\"Ramón J. Aliaga ,&nbsp;Eva Pernecká ,&nbsp;Richard J. Smith\",\"doi\":\"10.1016/j.na.2025.113851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> be the space of Lipschitz functions on a complete metric space <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span> that vanish at a point <span><math><mrow><mn>0</mn><mo>∈</mo><mi>M</mi></mrow></math></span>. We investigate its dual <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> using the De Leeuw transform, which allows representing each functional on <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> as a (non-unique) measure on <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span>, where <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the space of pairs <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mi>M</mi><mo>×</mo><mi>M</mi></mrow></math></span>, <span><math><mrow><mi>x</mi><mo>≠</mo><mi>y</mi></mrow></math></span>. We distinguish a set of points of <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span> that are “away from infinity”, which can be assigned coordinates belonging to the Lipschitz realcompactification <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> of <span><math><mi>M</mi></math></span>. We define a natural metric <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> on <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> extending <span><math><mi>d</mi></math></span> and we show that optimal (i.e. positive and norm-minimal) De Leeuw representations of well-behaved functionals are characterised by <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-cyclical monotonicity of their support, extending known results for functionals in <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, the predual of <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>. We also extend the Kantorovich–Rubinstein theorem to normal Hausdorff spaces, in particular to <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span>, and use this to characterise measure-induced and majorisable functionals in <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> as those admitting optimal representations with additional finiteness properties. Finally, we use De Leeuw representations to define a natural L-projection of <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> onto <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> under some conditions on <span><math><mi>M</mi></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"260 \",\"pages\":\"Article 113851\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001051\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001051","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Lip0(M)为完备度量空间(M,d)上的Lipschitz函数在点0∈M处消失的空间。我们使用De Leeuw变换研究了它的对偶Lip0(M)∗,该变换允许将Lip0(M)上的每个泛函表示为βM ~上的(非唯一)测度,其中M ~是对(x,y)∈M×M, x≠y的空间。我们区分了一组βM ~“远离无穷”的点,它们可以被分配为属于M的Lipschitz实紧化MR的坐标。我们在MR上定义了一个自然度量d′,扩展了d′,并证明了表现良好的泛函的最优(即正的和范数极小的)De Leeuw表示的支持是d′-周期单调性,扩展了F(M)中泛函的已知结果,即Lip0(M)的前元。我们也将Kantorovich-Rubinstein定理推广到正规的Hausdorff空间,特别是推广到MR空间,并利用它来表征Lip0(M)∗中的测度诱导泛函和可调泛函,这些泛函承认具有附加有限性质的最优表示。最后,我们使用De Leeuw表示定义了在M上的某些条件下Lip0(M)∗在F(M)上的自然l -投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De Leeuw representations of functionals on Lipschitz spaces
Let Lip0(M) be the space of Lipschitz functions on a complete metric space (M,d) that vanish at a point 0M. We investigate its dual Lip0(M) using the De Leeuw transform, which allows representing each functional on Lip0(M) as a (non-unique) measure on βM˜, where M˜ is the space of pairs (x,y)M×M, xy. We distinguish a set of points of βM˜ that are “away from infinity”, which can be assigned coordinates belonging to the Lipschitz realcompactification MR of M. We define a natural metric d̄ on MR extending d and we show that optimal (i.e. positive and norm-minimal) De Leeuw representations of well-behaved functionals are characterised by d̄-cyclical monotonicity of their support, extending known results for functionals in F(M), the predual of Lip0(M). We also extend the Kantorovich–Rubinstein theorem to normal Hausdorff spaces, in particular to MR, and use this to characterise measure-induced and majorisable functionals in Lip0(M) as those admitting optimal representations with additional finiteness properties. Finally, we use De Leeuw representations to define a natural L-projection of Lip0(M) onto F(M) under some conditions on M.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信