Anna Musilová , Aleš Nekvinda , Dalimil Peša , Hana Turčinová
{"title":"重排不变拟banach函数空间的性质","authors":"Anna Musilová , Aleš Nekvinda , Dalimil Peša , Hana Turčinová","doi":"10.1016/j.na.2025.113854","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores some important aspects of the theory of rearrangement-invariant quasi-Banach function spaces. We focus on two main topics. Firstly, we prove an analogue of the Luxemburg representation theorem for rearrangement-invariant quasi-Banach function spaces over resonant measure spaces. Secondly, we develop the theory of fundamental functions and endpoint spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113854"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the properties of rearrangement-invariant quasi-Banach function spaces\",\"authors\":\"Anna Musilová , Aleš Nekvinda , Dalimil Peša , Hana Turčinová\",\"doi\":\"10.1016/j.na.2025.113854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores some important aspects of the theory of rearrangement-invariant quasi-Banach function spaces. We focus on two main topics. Firstly, we prove an analogue of the Luxemburg representation theorem for rearrangement-invariant quasi-Banach function spaces over resonant measure spaces. Secondly, we develop the theory of fundamental functions and endpoint spaces.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"260 \",\"pages\":\"Article 113854\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001087\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001087","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the properties of rearrangement-invariant quasi-Banach function spaces
This paper explores some important aspects of the theory of rearrangement-invariant quasi-Banach function spaces. We focus on two main topics. Firstly, we prove an analogue of the Luxemburg representation theorem for rearrangement-invariant quasi-Banach function spaces over resonant measure spaces. Secondly, we develop the theory of fundamental functions and endpoint spaces.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.