曲率方程的流动法

IF 1.3 2区 数学 Q1 MATHEMATICS
Shanwei Ding, Guanghan Li
{"title":"曲率方程的流动法","authors":"Shanwei Ding,&nbsp;Guanghan Li","doi":"10.1016/j.na.2025.113873","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a general curvature equation <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mi>G</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>k</mi></math></span> is the principal curvature of the hypersurface <em>M</em> with position vector <span><math><mi>X</mi></math></span>. It includes the classical prescribed curvature measures problem and area measures problem. However, Guan et al. (2015) proved that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> estimate fails usually for general function <span><math><mi>F</mi></math></span>. Thus, in this paper, we pose some additional conditions of <span><math><mi>G</mi></math></span> to get existence results by a suitably designed parabolic flow. In particular, if <span><math><mrow><mi>F</mi><mo>=</mo><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msubsup></mrow></math></span> for <span><math><mrow><mo>∀</mo><mn>1</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the existence result has been derived in the famous work Guan et al. (2012) with <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span>. This result will be generalized to <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>q</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span> with <span><math><mrow><mi>p</mi><mo>&gt;</mo><mi>q</mi></mrow></math></span> for arbitrary <span><math><mi>k</mi></math></span> by a suitable auxiliary function. The uniqueness of the solutions in some cases is also studied.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113873"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flow method for curvature equations\",\"authors\":\"Shanwei Ding,&nbsp;Guanghan Li\",\"doi\":\"10.1016/j.na.2025.113873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a general curvature equation <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mi>G</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>k</mi></math></span> is the principal curvature of the hypersurface <em>M</em> with position vector <span><math><mi>X</mi></math></span>. It includes the classical prescribed curvature measures problem and area measures problem. However, Guan et al. (2015) proved that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> estimate fails usually for general function <span><math><mi>F</mi></math></span>. Thus, in this paper, we pose some additional conditions of <span><math><mi>G</mi></math></span> to get existence results by a suitably designed parabolic flow. In particular, if <span><math><mrow><mi>F</mi><mo>=</mo><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msubsup></mrow></math></span> for <span><math><mrow><mo>∀</mo><mn>1</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the existence result has been derived in the famous work Guan et al. (2012) with <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span>. This result will be generalized to <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>q</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span> with <span><math><mrow><mi>p</mi><mo>&gt;</mo><mi>q</mi></mrow></math></span> for arbitrary <span><math><mi>k</mi></math></span> by a suitable auxiliary function. The uniqueness of the solutions in some cases is also studied.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113873\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001270\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001270","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个广义曲率方程F(k)=G(X,ν(X)),其中k为位置向量X的超曲面M的主曲率,它包括经典的规定曲率测度问题和面积测度问题。但Guan等人(2015)证明,对于一般函数f, C2估计通常不成立。因此,本文通过适当设计抛物流,对G提出一些附加条件,得到存在性结果。特别地,如果∀1≥k≤n−1的F=σk1k,则在著名著作Guan et al.(2012)中已经导出了G=ψ(X|X|) < X,ν > 1k|X|−n+1k的存在性结果。这个结果将推广到G=ψ(X|X|) < X,ν > 1−pk|X|q−k−1k,并通过一个合适的辅助函数对任意k进行p>;q。研究了某些情况下解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A flow method for curvature equations
We consider a general curvature equation F(k)=G(X,ν(X)), where k is the principal curvature of the hypersurface M with position vector X. It includes the classical prescribed curvature measures problem and area measures problem. However, Guan et al. (2015) proved that the C2 estimate fails usually for general function F. Thus, in this paper, we pose some additional conditions of G to get existence results by a suitably designed parabolic flow. In particular, if F=σk1k for 1kn1, the existence result has been derived in the famous work Guan et al. (2012) with G=ψ(X|X|)X,ν1k|X|n+1k. This result will be generalized to G=ψ(X|X|)X,ν1pk|X|qk1k with p>q for arbitrary k by a suitable auxiliary function. The uniqueness of the solutions in some cases is also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信