{"title":"曲率方程的流动法","authors":"Shanwei Ding, Guanghan Li","doi":"10.1016/j.na.2025.113873","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a general curvature equation <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mi>G</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>k</mi></math></span> is the principal curvature of the hypersurface <em>M</em> with position vector <span><math><mi>X</mi></math></span>. It includes the classical prescribed curvature measures problem and area measures problem. However, Guan et al. (2015) proved that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> estimate fails usually for general function <span><math><mi>F</mi></math></span>. Thus, in this paper, we pose some additional conditions of <span><math><mi>G</mi></math></span> to get existence results by a suitably designed parabolic flow. In particular, if <span><math><mrow><mi>F</mi><mo>=</mo><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msubsup></mrow></math></span> for <span><math><mrow><mo>∀</mo><mn>1</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the existence result has been derived in the famous work Guan et al. (2012) with <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span>. This result will be generalized to <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>q</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span> with <span><math><mrow><mi>p</mi><mo>></mo><mi>q</mi></mrow></math></span> for arbitrary <span><math><mi>k</mi></math></span> by a suitable auxiliary function. The uniqueness of the solutions in some cases is also studied.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113873"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flow method for curvature equations\",\"authors\":\"Shanwei Ding, Guanghan Li\",\"doi\":\"10.1016/j.na.2025.113873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a general curvature equation <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mi>G</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>k</mi></math></span> is the principal curvature of the hypersurface <em>M</em> with position vector <span><math><mi>X</mi></math></span>. It includes the classical prescribed curvature measures problem and area measures problem. However, Guan et al. (2015) proved that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> estimate fails usually for general function <span><math><mi>F</mi></math></span>. Thus, in this paper, we pose some additional conditions of <span><math><mi>G</mi></math></span> to get existence results by a suitably designed parabolic flow. In particular, if <span><math><mrow><mi>F</mi><mo>=</mo><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msubsup></mrow></math></span> for <span><math><mrow><mo>∀</mo><mn>1</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the existence result has been derived in the famous work Guan et al. (2012) with <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span>. This result will be generalized to <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>q</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span> with <span><math><mrow><mi>p</mi><mo>></mo><mi>q</mi></mrow></math></span> for arbitrary <span><math><mi>k</mi></math></span> by a suitable auxiliary function. The uniqueness of the solutions in some cases is also studied.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113873\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001270\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001270","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider a general curvature equation , where is the principal curvature of the hypersurface M with position vector . It includes the classical prescribed curvature measures problem and area measures problem. However, Guan et al. (2015) proved that the estimate fails usually for general function . Thus, in this paper, we pose some additional conditions of to get existence results by a suitably designed parabolic flow. In particular, if for , the existence result has been derived in the famous work Guan et al. (2012) with . This result will be generalized to with for arbitrary by a suitable auxiliary function. The uniqueness of the solutions in some cases is also studied.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.