Nature Structural & Molecular Biology最新文献

筛选
英文 中文
Structural basis of tRNA recognition by the m3C RNA methyltransferase METTL6 in complex with SerRS seryl-tRNA synthetase m3C RNA 甲基转移酶 METTL6 与 SerRS 丝氨酰-tRNA 合成酶复合物识别 tRNA 的结构基础
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-25 DOI: 10.1038/s41594-024-01341-3
Philipp Throll, Luciano G. Dolce, Palma Rico-Lastres, Katharina Arnold, Laura Tengo, Shibom Basu, Stefanie Kaiser, Robert Schneider, Eva Kowalinski
{"title":"Structural basis of tRNA recognition by the m3C RNA methyltransferase METTL6 in complex with SerRS seryl-tRNA synthetase","authors":"Philipp Throll, Luciano G. Dolce, Palma Rico-Lastres, Katharina Arnold, Laura Tengo, Shibom Basu, Stefanie Kaiser, Robert Schneider, Eva Kowalinski","doi":"10.1038/s41594-024-01341-3","DOIUrl":"10.1038/s41594-024-01341-3","url":null,"abstract":"Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors. The authors use cryo-electron microscopy and biochemistry to reveal how 3-methylcytosine (m3C) methyltransferases bind tRNA. They also find that the human m3C methyltransferase METTL6 forms a tRNA-dependent complex with seryl-tRNA synthetase to methylate target tRNAs efficiently.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1614-1624"},"PeriodicalIF":12.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01341-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The tRNA methyltransferase METTL6 requires seryl-tRNA synthetase for tRNASer targeting tRNA甲基转移酶METTL6需要丝氨酰-tRNA合成酶来实现tRNASer靶向作用
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-25 DOI: 10.1038/s41594-024-01343-1
{"title":"The tRNA methyltransferase METTL6 requires seryl-tRNA synthetase for tRNASer targeting","authors":"","doi":"10.1038/s41594-024-01343-1","DOIUrl":"10.1038/s41594-024-01343-1","url":null,"abstract":"Overexpression of the RNA methyltransferase METTL6 leads to increased proliferation and promotes cancer. Our cryo-electron microscopy (cryo-EM) and biochemical analyses reveal that METTL6 requires seryl-tRNA synthetase as a cofactor to efficiently generate 3-methyl-cytosine in serine tRNAs.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1464-1465"},"PeriodicalIF":12.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD TBK1适配体NAP1和SINTBAD控制有丝分裂的启动和进展
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-25 DOI: 10.1038/s41594-024-01338-y
Elias Adriaenssens, Thanh Ngoc Nguyen, Justyna Sawa-Makarska, Grace Khuu, Martina Schuschnig, Stephen Shoebridge, Marvin Skulsuppaisarn, Emily Maria Watts, Kitti Dora Csalyi, Benjamin Scott Padman, Michael Lazarou, Sascha Martens
{"title":"Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD","authors":"Elias Adriaenssens, Thanh Ngoc Nguyen, Justyna Sawa-Makarska, Grace Khuu, Martina Schuschnig, Stephen Shoebridge, Marvin Skulsuppaisarn, Emily Maria Watts, Kitti Dora Csalyi, Benjamin Scott Padman, Michael Lazarou, Sascha Martens","doi":"10.1038/s41594-024-01338-y","DOIUrl":"10.1038/s41594-024-01338-y","url":null,"abstract":"Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression. Mitophagy is an important quality control pathway. Here, the authors identify the mechanisms enabling the TBK1 adaptors NAP1 and SINTBAD to prevent hyperactivation of PINK1/Parkin mitophagy while promoting the pathway once set in motion.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1717-1731"},"PeriodicalIF":12.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01338-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16 单亚基去泛素化酶 USP16 对核糖体 H2AK119 进行去泛素化的结构和机理基础
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-25 DOI: 10.1038/s41594-024-01342-2
Huasong Ai, Zaozhen He, Zhiheng Deng, Guo-Chao Chu, Qiang Shi, Zebin Tong, Jia-Bin Li, Man Pan, Lei Liu
{"title":"Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16","authors":"Huasong Ai, Zaozhen He, Zhiheng Deng, Guo-Chao Chu, Qiang Shi, Zebin Tong, Jia-Bin Li, Man Pan, Lei Liu","doi":"10.1038/s41594-024-01342-2","DOIUrl":"10.1038/s41594-024-01342-2","url":null,"abstract":"Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16–H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A–H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16. The H2AK119Ub is inversely regulated by nucleosomal deubiquitinase. Here the authors report the cryo-EM structure of single-subunit USP16 bound to H2AK119Ub nucleosome, unveiling a fundamentally distinct mode of H2AK119Ub deubiquitination compared to multi-subunit PR-DUB.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1745-1755"},"PeriodicalIF":12.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro XLF 和 XRCC4 的无序区的多价相互作用促进了细胞 NHEJ 的稳健性,并推动了体外连接促进凝聚物的形成
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-19 DOI: 10.1038/s41594-024-01339-x
Duc-Duy Vu, Alessio Bonucci, Manon Brenière, Metztli Cisneros-Aguirre, Philippe Pelupessy, Ziqing Wang, Ludovic Carlier, Guillaume Bouvignies, Patricia Cortes, Aneel K. Aggarwal, Martin Blackledge, Zoher Gueroui, Valérie Belle, Jeremy M. Stark, Mauro Modesti, Fabien Ferrage
{"title":"Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro","authors":"Duc-Duy Vu, Alessio Bonucci, Manon Brenière, Metztli Cisneros-Aguirre, Philippe Pelupessy, Ziqing Wang, Ludovic Carlier, Guillaume Bouvignies, Patricia Cortes, Aneel K. Aggarwal, Martin Blackledge, Zoher Gueroui, Valérie Belle, Jeremy M. Stark, Mauro Modesti, Fabien Ferrage","doi":"10.1038/s41594-024-01339-x","DOIUrl":"10.1038/s41594-024-01339-x","url":null,"abstract":"In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70–Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies. What is the role of disorder in non-homologous end-joining proteins? The authors use nuclear magnetic resonance to reveal that disordered regions mediate a network of multivalent interactions, promoting biomolecular condensation that accelerates DNA ligation kinetics.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1732-1744"},"PeriodicalIF":12.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants 与抗惊厥药结合的突触小泡蛋白 2A 和 2B 的结构
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-19 DOI: 10.1038/s41594-024-01335-1
Anshumali Mittal, Matthew F. Martin, Elena J. Levin, Christopher Adams, Meng Yang, Laurent Provins, Adrian Hall, Martin Procter, Marie Ledecq, Alexander Hillisch, Christian Wolff, Michel Gillard, Peter S. Horanyi, Jonathan A. Coleman
{"title":"Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants","authors":"Anshumali Mittal, Matthew F. Martin, Elena J. Levin, Christopher Adams, Meng Yang, Laurent Provins, Adrian Hall, Martin Procter, Marie Ledecq, Alexander Hillisch, Christian Wolff, Michel Gillard, Peter S. Horanyi, Jonathan A. Coleman","doi":"10.1038/s41594-024-01335-1","DOIUrl":"10.1038/s41594-024-01335-1","url":null,"abstract":"Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s. The synaptic vesicle protein 2 family are essential membrane proteins found in the brain that bind synaptotagmin and are targeted by anti-seizure medications. Structures reveal common features found in transport proteins, and the basis of ligand binding and selectivity.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 12","pages":"1964-1974"},"PeriodicalIF":12.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure of the poxvirus core 痘病毒核心的结构
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-18 DOI: 10.1038/s41594-024-01331-5
Fasséli Coulibaly
{"title":"Structure of the poxvirus core","authors":"Fasséli Coulibaly","doi":"10.1038/s41594-024-01331-5","DOIUrl":"10.1038/s41594-024-01331-5","url":null,"abstract":"Poxviruses range from deadly smallpox to attenuated vaccinia virus used in vaccines and oncolytic vectors. Despite their broad, if antithetical, effects on humankind, the mechanistic details of poxvirus assembly are not known. Here we discuss advances in revealing the structure of the palisade layer which underlies the viral core morphology.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 7","pages":"1001-1003"},"PeriodicalIF":12.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms 多种状态下 Smc5/6 的冷冻电镜结构揭示了其组装和功能机制
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-18 DOI: 10.1038/s41594-024-01319-1
Qian Li, Jun Zhang, Cory Haluska, Xiang Zhang, Lei Wang, Guangfeng Liu, Zhaoning Wang, Duo Jin, Tong Cheng, Hongxia Wang, Yuan Tian, Xiangxi Wang, Lei Sun, Xiaolan Zhao, Zhenguo Chen, Lanfeng Wang
{"title":"Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms","authors":"Qian Li, Jun Zhang, Cory Haluska, Xiang Zhang, Lei Wang, Guangfeng Liu, Zhaoning Wang, Duo Jin, Tong Cheng, Hongxia Wang, Yuan Tian, Xiangxi Wang, Lei Sun, Xiaolan Zhao, Zhenguo Chen, Lanfeng Wang","doi":"10.1038/s41594-024-01319-1","DOIUrl":"10.1038/s41594-024-01319-1","url":null,"abstract":"Smc5/6 is a member of the eukaryotic structural maintenance of chromosomes (SMC) family of complexes with important roles in genome maintenance and viral restriction. However, limited structural understanding of Smc5/6 hinders the elucidation of its diverse functions. Here, we report cryo-EM structures of the budding yeast Smc5/6 complex in eight-subunit, six-subunit and five-subunit states. Structural maps throughout the entire length of these complexes reveal modularity and key elements in complex assembly. We show that the non-SMC element (Nse)2 subunit supports the overall shape of the complex and uses a wedge motif to aid the stability and function of the complex. The Nse6 subunit features a flexible hook region for attachment to the Smc5 and Smc6 arm regions, contributing to the DNA repair roles of the complex. Our results also suggest a structural basis for the opposite effects of the Nse1–3–4 and Nse5–6 subcomplexes in regulating Smc5/6 ATPase activity. Collectively, our integrated structural and functional data provide a framework for understanding Smc5/6 assembly and function. Cryo-EM structures covering full-length yeast Smc5/6 in three states and the accompanying mutagenesis data reveal multiple new structural and functional features of this unique SMC complex.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1532-1542"},"PeriodicalIF":12.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural basis for the dynamic chaperoning of disordered clients by Hsp90 Hsp90 对无序客户进行动态陪衬的结构基础
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-18 DOI: 10.1038/s41594-024-01337-z
Xiaozhan Qu, Shuo Zhao, Chanjuan Wan, Lei Zhu, Tuo Ji, Paolo Rossi, Junfeng Wang, Charalampos G. Kalodimos, Chao Wang, Weiya Xu, Chengdong Huang
{"title":"Structural basis for the dynamic chaperoning of disordered clients by Hsp90","authors":"Xiaozhan Qu, Shuo Zhao, Chanjuan Wan, Lei Zhu, Tuo Ji, Paolo Rossi, Junfeng Wang, Charalampos G. Kalodimos, Chao Wang, Weiya Xu, Chengdong Huang","doi":"10.1038/s41594-024-01337-z","DOIUrl":"10.1038/s41594-024-01337-z","url":null,"abstract":"Molecular chaperone heat shock protein 90 (Hsp90) is a ubiquitous regulator that fine-tunes and remodels diverse client proteins, exerting profound effects on normal biology and diseases. Unraveling the mechanistic details of Hsp90’s function requires atomic-level insights into its client interactions throughout the adenosine triphosphate-coupled functional cycle. However, the structural details of the initial encounter complex in the chaperone cycle, wherein Hsp90 adopts an open conformation while engaging with the client, remain elusive. Here, using nuclear magnetic resonance spectroscopy, we determined the solution structure of Hsp90 in its open state, bound to a disordered client. Our findings reveal that Hsp90 uses two distinct binding sites, collaborating synergistically to capture discrete hydrophobic segments within client proteins. This bipartite interaction generates a versatile complex that facilitates rapid conformational sampling. Moreover, our investigations spanning various clients and Hsp90 orthologs demonstrate a pervasive mechanism used by Hsp90 orthologs to accommodate the vast array of client proteins. Collectively, our work contributes to establish a unified conceptual and mechanistic framework, elucidating the intricate interplay between Hsp90 and its clients. Here, using nuclear magnetic resonance spectroscopy, the authors delineate how the molecular chaperone Hsp90, in its open state, uses its two middle domains to synergistically capture a disordered client in a highly dynamic manner, forming a bipartite complex.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1482-1491"},"PeriodicalIF":12.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The human ATAD5 has evolved unique structural elements to function exclusively as a PCNA unloader 人类 ATAD5 已进化出独特的结构元素,专门作为 PCNA 卸载器发挥作用
IF 12.5 1区 生物学
Nature Structural & Molecular Biology Pub Date : 2024-06-13 DOI: 10.1038/s41594-024-01332-4
Feng Wang, Qing He, Nina Y. Yao, Michael E. O’Donnell, Huilin Li
{"title":"The human ATAD5 has evolved unique structural elements to function exclusively as a PCNA unloader","authors":"Feng Wang, Qing He, Nina Y. Yao, Michael E. O’Donnell, Huilin Li","doi":"10.1038/s41594-024-01332-4","DOIUrl":"10.1038/s41594-024-01332-4","url":null,"abstract":"Humans have three different proliferating cell nuclear antigen (PCNA) clamp-loading complexes: RFC and CTF18-RFC load PCNA onto DNA, but ATAD5-RFC can only unload PCNA from DNA. The underlying structural basis of ATAD5-RFC unloading is unknown. We show here that ATAD5 has two unique locking loops that appear to tie the complex into a rigid structure, and together with a domain that plugs the DNA-binding chamber, prevent conformation changes required for DNA binding, likely explaining why ATAD5-RFC is exclusively a PCNA unloader. These features are conserved in the yeast PCNA unloader Elg1-RFC. We observe intermediates in which PCNA bound to ATAD5-RFC exists as a closed planar ring, a cracked spiral or a gapped spiral. Surprisingly, ATAD5-RFC can open a PCNA gap between PCNA protomers 2 and 3, different from the PCNA protomers 1 and 3 gap observed in all previously characterized clamp loaders. Cryo-EM structures of the human clamp unloader ATAD5-RFC bound to the sliding clamp PCNA reveal two unique locking loops and one chamber plug that prevent DNA from entering the ATAD5-RFC and explain why ATAD5-RFC is exclusively a PCNA unloader.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1680-1691"},"PeriodicalIF":12.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01332-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信