Biomedical Microdevices最新文献

筛选
英文 中文
Study on Intestinal Pressure after Implantation of Biaxial Actuated Artificial Anal Sphincter in Animal 动物植入双轴驱动人工肛门括约肌后的肠压研究
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-08-31 DOI: 10.1007/s10544-024-00722-1
Fangfang Hua, Guozheng Yan, Lichao Wang, Tong Wu
{"title":"Study on Intestinal Pressure after Implantation of Biaxial Actuated Artificial Anal Sphincter in Animal","authors":"Fangfang Hua,&nbsp;Guozheng Yan,&nbsp;Lichao Wang,&nbsp;Tong Wu","doi":"10.1007/s10544-024-00722-1","DOIUrl":"10.1007/s10544-024-00722-1","url":null,"abstract":"<div><p>Fecal incontinence (FI) referred to the inability to control the leakage of solid, liquid, or gaseous feces, the artificial anal sphincter (AAS) was the last resort for patients with FI except enterostomy. In order to the clinical application value of AAS was improved, the detection and analysis of intestinal pressure information was very necessary. Biaxial actuated artificial anal sphincter (BAAS) was a new type of AAS, which not only had a stable, long-term and safe energy supply, but also could provide real-time feedback of intestinal pressure information. In this paper, the BAAS was implanted into piglets for a long-term animal experiment. Piglets’ life habits, defecation habits and intestinal pressure were analyzed. The analysis results showed that the BAAS system had good feces control effect, when the actuator of the BAAS system was closed, there was basically no fecal leakage of piglets, and when the actuator of the BAAS system was opened, the piglets could defecate normally. Under the normal condition of the piglets’ health state and the BAAS’s operating state, the accuracy of the defecation perception reached to 65.79%. This study realized the in-depth study of the mechanism of piglets’ defecation, and provided guidance for the development of a new generation of AAS.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound-assisted water oxidation: unveiling the role of piezoelectric metal-oxide sonocatalysts for cancer treatment 超声辅助水氧化:揭示压电金属氧化物声催化剂在癌症治疗中的作用。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-08-19 DOI: 10.1007/s10544-024-00720-3
Marco Carofiglio, Nicolò Maria Percivalle, Simelys Hernandez, Marco Laurenti, Giancarlo Canavese, Joana C. Matos, M. Clara Gonçalves, Valentina Cauda
{"title":"Ultrasound-assisted water oxidation: unveiling the role of piezoelectric metal-oxide sonocatalysts for cancer treatment","authors":"Marco Carofiglio,&nbsp;Nicolò Maria Percivalle,&nbsp;Simelys Hernandez,&nbsp;Marco Laurenti,&nbsp;Giancarlo Canavese,&nbsp;Joana C. Matos,&nbsp;M. Clara Gonçalves,&nbsp;Valentina Cauda","doi":"10.1007/s10544-024-00720-3","DOIUrl":"10.1007/s10544-024-00720-3","url":null,"abstract":"<div><p>Ultrasound radiation has been widely used in biomedical application for both diagnosis and therapy. Metal oxides nanoparticles (NPs), like ZnO or TiO<sub>2</sub> NPs, have been widely demonstrated to act as excellent sonocatalysts and significantly enhance cavitation at their surface, making them optimal for sonodynamic cancer therapy. These NPs often possess semiconductive and piezoelectric properties that contribute to the complex phenomena occurring at the water-oxide interface during sonostimulation. Despite the great potential in applied sonocatalysis and water splitting, the complex mechanism that governs the phenomenon is still a research subject. This work investigates the role of piezoelectric ZnO micro- and nano-particles in ultrasound-assisted water oxidation. Three metal oxides presenting fundamental electronic and mechanical differences are evaluated in terms of ultrasound-triggered reactive oxygen species generation in aqueous media: electromechanically inert SiO<sub>2</sub> NPs, semiconducting TiO<sub>2</sub> NPs, piezoelectric and semiconducting ZnO micro- and nanoparticles with different surface areas and sizes. The presence of silver ions in the aqueous solution was further considered to impart a potential electron scavenging effects and better evaluate the oxygen generation performances of the different structures. Following sonoirradiation, the particles are optically and chemically analyzed to study the effect of sonostimulation at their surface. The production of gaseous molecular oxygen is measured, revealing the potential of piezoelectric particles to generate oxygen under hypoxic conditions typical of some cancer environments. Finally, the best candidates, i.e. ZnO nano and micro particles, were tested on osteosarcoma and glioblastoma cell lines to demonstrate their potential for cancer treatment.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latest progress of self-healing hydrogels in cardiac tissue engineering 自愈合水凝胶在心脏组织工程中的最新进展。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-08-16 DOI: 10.1007/s10544-024-00716-z
Lidia Maeso, Tatiane Eufrásio-da-Silva, Enes Deveci, Alireza Dolatshahi-Pirouz, Gorka Orive
{"title":"Latest progress of self-healing hydrogels in cardiac tissue engineering","authors":"Lidia Maeso,&nbsp;Tatiane Eufrásio-da-Silva,&nbsp;Enes Deveci,&nbsp;Alireza Dolatshahi-Pirouz,&nbsp;Gorka Orive","doi":"10.1007/s10544-024-00716-z","DOIUrl":"10.1007/s10544-024-00716-z","url":null,"abstract":"<div><p>Cardiovascular diseases represent a significant public health challenge and are responsible for more than 4 million deaths annually in Europe alone (45% of all deaths). Among these, coronary-related heart diseases are a leading cause of mortality, accounting for 20% of all deaths. Cardiac tissue engineering has emerged as a promising strategy to address the limitations encountered after myocardial infarction. This approach aims to improve regulation of the inflammatory and cell proliferation phases, thereby reducing scar tissue formation and restoring cardiac function. In cardiac tissue engineering, biomaterials serve as hosts for cells and therapeutics, supporting cardiac restoration by mimicking the native cardiac environment. Various bioengineered systems, such as 3D scaffolds, injectable hydrogels, and patches play crucial roles in cardiac tissue repair. In this context, self-healing hydrogels are particularly suitable substitutes, as they can restore structural integrity when damaged. This structural healing represents a paradigm shift in therapeutic interventions, offering a more native-like environment compared to static, non-healable hydrogels. Herein, we sharply review the most recent advances in self-healing hydrogels in cardiac tissue engineering and their potential to transform cardiovascular healthcare.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplex antibiotic susceptibility testing of urinary tract infections using an electrochemical lab-on-a-chip 利用电化学芯片实验室对尿路感染进行多重抗生素药敏试验。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-08-09 DOI: 10.1007/s10544-024-00719-w
Benjamin Crane, Alex Iles, Craig E. Banks, Mamun Rashid, Patricia E. Linton, Kirsty J. Shaw
{"title":"Multiplex antibiotic susceptibility testing of urinary tract infections using an electrochemical lab-on-a-chip","authors":"Benjamin Crane,&nbsp;Alex Iles,&nbsp;Craig E. Banks,&nbsp;Mamun Rashid,&nbsp;Patricia E. Linton,&nbsp;Kirsty J. Shaw","doi":"10.1007/s10544-024-00719-w","DOIUrl":"10.1007/s10544-024-00719-w","url":null,"abstract":"<div><p>Urinary tract infections (UTIs) represent the most prevalent type of outpatient infection, with significant adverse health and economic burdens. Current culture-based antibiotic susceptibility testing can take up to 72 h resulting in ineffective prescription of broad-spectrum antibiotics, poor clinical outcomes and development of further antibiotic resistance. We report an electrochemical lab-on-a-chip (LOC) for testing samples against seven clinically-relevant antibiotics. The LOC contained eight chambers, each housing an antibiotic-loaded hydrogel (cephalexin, ceftriaxone, colistin, gentamicin, piperacillin, trimethoprim, vancomycin) or antibiotic-free control, alongside a resazurin bulk-modified screen-printed electrode for electrochemical detection of metabolically active bacteria using differential pulse voltammetry. Antibiotic susceptibility in simulated UTI samples or donated human urine with either <i>Escherichia coli</i> or <i>Klebsiella pneumoniae</i> could be established within 85 min. Incorporating electrochemical detection onto a LOC provides an inexpensive, simple method for the sensitive determination of antibiotic susceptibility that is significantly faster than using a culture-based approach.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model 他克莫司洗脱神经引导导管可促进临界大小周围神经损伤大鼠模型的再生。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-08-05 DOI: 10.1007/s10544-024-00717-y
Azur Azapagic, Jayant Agarwal, Bruce Gale, Jill Shea, Susan Wojtalewicz, Himanshu Sant
{"title":"A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model","authors":"Azur Azapagic,&nbsp;Jayant Agarwal,&nbsp;Bruce Gale,&nbsp;Jill Shea,&nbsp;Susan Wojtalewicz,&nbsp;Himanshu Sant","doi":"10.1007/s10544-024-00717-y","DOIUrl":"10.1007/s10544-024-00717-y","url":null,"abstract":"<div><p>Critical-sized peripheral nerve injuries pose a significant clinical challenge and lead to functional loss and disability. Current regeneration strategies, including autografts, synthetic nerve conduits, and biologic treatments, encounter challenges such as limited availability, donor site morbidity, suboptimal recovery, potential immune responses, and sustained stability and bioactivity. An obstacle in peripheral nerve regeneration is the immune response that can lead to inflammation and scarring that impede the regenerative process. Addressing both the immunological and regenerative needs is crucial for successful nerve recovery. Here, we introduce a novel biodegradable tacrolimus-eluting nerve guidance conduit engineered from a blend of poly (L-lactide-co-caprolactone) to facilitate peripheral nerve regeneration and report the testing of this conduit in 15-mm critical-sized gaps in the sciatic nerve of rats. The conduit's diffusion holes enable the local release of tacrolimus, a potent immunosuppressant with neuro-regenerative properties, directly into the injury site. A series of <i>in vitro</i> experiments were conducted to assess the ability of the conduit to maintain a controlled tacrolimus release profile that could promote neurite outgrowth. Subsequent <i>in vivo</i> assessments in rat models of sciatic nerve injury revealed significant enhancements in nerve regeneration, as evidenced by improved axonal growth and functional recovery compared to controls using placebo conduits. These findings indicate the synergistic effects of combining a biodegradable conduit with localized, sustained delivery of tacrolimus, suggesting a promising approach for treating peripheral nerve injuries. Further optimization of the design and long-term efficacy studies and clinical trials are needed before the potential for clinical translation in humans can be considered.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research and development of microenvironment’s influence on stem cells from the apical papilla – construction of novel research microdevices: tooth-on-a-chip 研究和开发微环境对根尖乳头干细胞的影响--构建新型研究微型装置:芯片上的牙齿。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-07-18 DOI: 10.1007/s10544-024-00715-0
Hexuan Zhang, Lingjun Li, Xiaoqiang Sun, Benxiang Hou, Chunxiong Luo
{"title":"Research and development of microenvironment’s influence on stem cells from the apical papilla – construction of novel research microdevices: tooth-on-a-chip","authors":"Hexuan Zhang,&nbsp;Lingjun Li,&nbsp;Xiaoqiang Sun,&nbsp;Benxiang Hou,&nbsp;Chunxiong Luo","doi":"10.1007/s10544-024-00715-0","DOIUrl":"10.1007/s10544-024-00715-0","url":null,"abstract":"<div><p>Stem cells are crucial in tissue engineering, and their microenvironment greatly influences their behavior. Among the various dental stem cell types, stem cells from the apical papilla (SCAPs) have shown great potential for regenerating the pulp–dentin complex. Microenvironmental cues that affect SCAPs include physical and biochemical factors. To research optimal pulp–dentin complex regeneration, researchers have developed several models of controlled biomimetic microenvironments, ranging from <i>in vivo</i> animal models to <i>in vitro</i> models, including two-dimensional cultures and three-dimensional devices. Among these models, the most powerful tool is a microfluidic microdevice, a tooth-on-a-chip with high spatial resolution of microstructures and precise microenvironment control. In this review, we start with the SCAP microenvironment in the regeneration of pulp–dentin complexes and discuss research models and studies related to the biological process.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion 用于模拟羊水运动影响的动态流动胎膜片上器官系统。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-07-04 DOI: 10.1007/s10544-024-00714-1
Sungjin Kim, Po Yi Lam, Lauren S. Richardson, Ramkumar Menon, Arum Han
{"title":"A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion","authors":"Sungjin Kim,&nbsp;Po Yi Lam,&nbsp;Lauren S. Richardson,&nbsp;Ramkumar Menon,&nbsp;Arum Han","doi":"10.1007/s10544-024-00714-1","DOIUrl":"10.1007/s10544-024-00714-1","url":null,"abstract":"<div><p>Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocompatible Janus microparticle synthesis in a microfluidic device 在微流体设备中合成生物兼容的 Janus 微颗粒。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-07-01 DOI: 10.1007/s10544-024-00711-4
Muhammad Saqib, Yiğithan Tufan, Z. Cemre Orsel, Batur Ercan, E. Yegan Erdem
{"title":"Biocompatible Janus microparticle synthesis in a microfluidic device","authors":"Muhammad Saqib,&nbsp;Yiğithan Tufan,&nbsp;Z. Cemre Orsel,&nbsp;Batur Ercan,&nbsp;E. Yegan Erdem","doi":"10.1007/s10544-024-00711-4","DOIUrl":"10.1007/s10544-024-00711-4","url":null,"abstract":"<div><p>Janus particles are popular in recent years due to their anisotropic physical and chemical properties. Even though there are several established synthesis methods for Janus particles, microfluidics-based methods are convenient and reliable due to low reagent consumption, monodispersity of the resultant particles and efficient control over reaction conditions. In this work a simple droplet-based microfluidic technique is utilized to synthesize magnetically anisotropic TiO2-Fe2O3 Janus microparticles. Two droplets containing reagents for Janus particle were merged by using an asymmetric device such that the resulting droplet contained the constituents within its two hemispheres distinct from each other. The synthesized Janus particles were observed under the optical microscope and the scanning electron microscope. Moreover, a detailed <i>in vitro</i> characterization of these particles was completed, and it was shown that these particles have a potential use for biomedical applications.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible electronics for heavy metal ion detection in water: a comprehensive review 用于检测水中重金属离子的柔性电子器件:全面综述。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-06-24 DOI: 10.1007/s10544-024-00710-5
Ely Leburu, Yuting Qiao, Yanshen Wang, Jiakuan Yang, Sha Liang, Wenbo Yu, Shushan Yuan, Huabo Duan, Liang Huang, Jingping Hu, Huijie Hou
{"title":"Flexible electronics for heavy metal ion detection in water: a comprehensive review","authors":"Ely Leburu,&nbsp;Yuting Qiao,&nbsp;Yanshen Wang,&nbsp;Jiakuan Yang,&nbsp;Sha Liang,&nbsp;Wenbo Yu,&nbsp;Shushan Yuan,&nbsp;Huabo Duan,&nbsp;Liang Huang,&nbsp;Jingping Hu,&nbsp;Huijie Hou","doi":"10.1007/s10544-024-00710-5","DOIUrl":"10.1007/s10544-024-00710-5","url":null,"abstract":"<div><p>Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy 富含间充质干细胞的三维生物打印支架增强了皮下血管的生成,可用于细胞治疗。
IF 3 4区 医学
Biomedical Microdevices Pub Date : 2024-06-18 DOI: 10.1007/s10544-024-00713-2
Tommaso Bo, Elia Pascucci, Simone Capuani, Jocelyn Nikita Campa-Carranza, Letizia Franco, Marco Farina, Jacopo Secco, Sara Becchi, Rosanna Cavazzana, Ashley L. Joubert, Nathanael Hernandez, Corrine Ying Xuan Chua, Alessandro Grattoni
{"title":"3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy","authors":"Tommaso Bo,&nbsp;Elia Pascucci,&nbsp;Simone Capuani,&nbsp;Jocelyn Nikita Campa-Carranza,&nbsp;Letizia Franco,&nbsp;Marco Farina,&nbsp;Jacopo Secco,&nbsp;Sara Becchi,&nbsp;Rosanna Cavazzana,&nbsp;Ashley L. Joubert,&nbsp;Nathanael Hernandez,&nbsp;Corrine Ying Xuan Chua,&nbsp;Alessandro Grattoni","doi":"10.1007/s10544-024-00713-2","DOIUrl":"10.1007/s10544-024-00713-2","url":null,"abstract":"<div><p>Subcutaneous delivery of cell therapy is an appealing minimally-invasive strategy for the treatment of various diseases. However, the subdermal site is poorly vascularized making it inadequate for supporting engraftment, viability, and function of exogenous cells. In this study, we developed a 3D bioprinted scaffold composed of alginate/gelatin (Alg/Gel) embedded with mesenchymal stem cells (MSCs) to enhance vascularization and tissue ingrowth in a subcutaneous microenvironment. We identified bio-ink crosslinking conditions that optimally recapitulated the mechanical properties of subcutaneous tissue. We achieved controlled degradation of the Alg/Gel scaffold synchronous with host tissue ingrowth and remodeling. Further, in a rat model, the Alg/Gel scaffold was superior to MSC-embedded Pluronic hydrogel in supporting tissue development and vascularization of a subcutaneous site. While the scaffold alone promoted vascular tissue formation, the inclusion of MSCs in the bio-ink further enhanced angiogenesis. Our findings highlight the use of simple cell-laden degradable bioprinted structures to generate a supportive microenvironment for cell delivery.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信