Biomedical Microdevices最新文献

筛选
英文 中文
The protective effect of puerarin-loaded mesoporous silicon nanoparticles on alcoholic hepatitis through mTOR-mediated autophagy pathway 葛根素负载的介孔硅纳米颗粒通过mtor介导的自噬途径对酒精性肝炎的保护作用
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-10-29 DOI: 10.1007/s10544-022-00622-2
Xia-xia Zhang, Yan-fei Lang, Xin Li, Zheng Li, You-qing Xu, Hong-qian Chu
{"title":"The protective effect of puerarin-loaded mesoporous silicon nanoparticles on alcoholic hepatitis through mTOR-mediated autophagy pathway","authors":"Xia-xia Zhang,&nbsp;Yan-fei Lang,&nbsp;Xin Li,&nbsp;Zheng Li,&nbsp;You-qing Xu,&nbsp;Hong-qian Chu","doi":"10.1007/s10544-022-00622-2","DOIUrl":"10.1007/s10544-022-00622-2","url":null,"abstract":"<div><p>Puerarin, a bioactive flavone compound isolated from Pueraria (Wild.), provides hepatoprotection by anti-inflammatory, anti-alcoholism, and regulating mechanistic target of rapamycin (mTOR). Building evidence suggests that the activation of mTOR reduces liver injuries associated with alcohol consumption and metabolism. However, the poor water solubility, low bioavailability, and short half-life of puerarin hinder its clinical application. The utility of mesoporous silicon nanoparticles (MSNs) can improve traditional Chinese medicine limitations. Stober methods were used to fabricate MSNs@Pue, and the size, zeta potentials and drug encapsulation efficiency were characterized by a series of analytical methods. IVIS Imaging System demonstrated liver-targeted bio-distribution, and then high-throughput sequencing, immunoproteomics and ultrastructure methods indicated autophagy related protective mechanism, followed by curative effect evaluation for the treatment efficacy. An acute-on chronic ethanol-drinking according to Gao-binge model induced alcoholic hepatitis (AH) pathology and resulted in hepatic hyper-autophagy, which was improved with MSNs@Pue administration (puerarin: 30 mM, 42 mg/kg; intravenously [i.v.]). Ethanol-fed mice were found to have increased expression of autophagy-related proteins (Atg3, Atg7, LC3 and p62). In contrast, MSNs@Pue administration significantly decreased the expression of these proteins and alleviated fatty droplets infiltration in damaged liver. Furthermore, acute-on-chronic ethanol feeding also resulted in the activiation of ERK activation and mTOR expression, which were reversed with MSNs@Pue administration and better than the usage of puerarin alone. Results point to MSNs@Pue mediated ERK/mTOR signaling pathway activation as a possible protective strategy to improve AH, which provides a strategy and evidence for treating liver disease using an MSN delivery system.\u0000</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00622-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5131753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy 数字滤波传播优化阻抗细胞术信号质量和计数精度
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-10-28 DOI: 10.1007/s10544-022-00636-w
Brandon K. Ashley, Umer Hassan
{"title":"Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy","authors":"Brandon K. Ashley,&nbsp;Umer Hassan","doi":"10.1007/s10544-022-00636-w","DOIUrl":"10.1007/s10544-022-00636-w","url":null,"abstract":"<div><p>Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor’s design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00636-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5103201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative analysis of low intensity ultrasound effects on living cells: from simulation to experiments 低强度超声对活细胞影响的比较分析:从模拟到实验
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-10-24 DOI: 10.1007/s10544-022-00635-x
Giulia Tamboia, Michele Campanini, Veronica Vighetto, Luisa Racca, Luca Spigarelli, Giancarlo Canavese, Valentina Cauda
{"title":"A comparative analysis of low intensity ultrasound effects on living cells: from simulation to experiments","authors":"Giulia Tamboia,&nbsp;Michele Campanini,&nbsp;Veronica Vighetto,&nbsp;Luisa Racca,&nbsp;Luca Spigarelli,&nbsp;Giancarlo Canavese,&nbsp;Valentina Cauda","doi":"10.1007/s10544-022-00635-x","DOIUrl":"10.1007/s10544-022-00635-x","url":null,"abstract":"<div><p>Ultrasounds are already broadly exploited in clinical diagnostics and are now becoming a powerful and not harmful tool in antitumoral therapies, as they are able to produce damages towards cancer cells, thank to inertial cavitation and temperature increase. The use of US alone or combined to molecular compounds, microbubbles or solid-state nanoparticles is the focus of current research and clinical trials, like thermoablation, drug sonoporation or sonodynamic therapies. In the present work, we discuss on the non-thermal effects of ultrasound and the conditions which enable oxygen radical production and which role they can have in provoking the death of different cancer cell lines. In this perspective, we set a mathematical model to predict the pressure spatial distribution in a defined water sample volume and thus obtain a map of acoustic pressures and acoustic intensities of the applied ultrasound at different input powers. We then validate and verify these numerical results with direct acoustic measurements and by detecting the production of reactive oxygen species (ROS) by means of sonochemiluminescence (SCL) and electron paramagnetic resonance (EPR) spectroscopy, applied to the same water sample volume and using the same US input parameters adopted in the simulation. Finally, the various US conditions are applied to two different set of cancer cell lines, a cervical adenocarcinoma and a hematological cancer, Burkitt’s lymphoma. We hypothesize how the ROS generation can influence the recorded cell death. In a second set of experiments, the role of semiconductor metal oxide nanocrystals, i.e. zinc oxide, is also evaluated by adding them to the water and biological systems. In particular, the role of ZnO in enhancing the ROS production is verified. Furthermore, the interplay among US and ZnO nanocrystals is evaluated in provoking cancer cell death at specific conditions. This study demonstrates a useful correlation between numerical simulation and experimental acoustic validation as well as with ROS measurement at both qualitative and quantitative levels during US irradiation of simple water solution. It further tries to translate the obtained results to justify one of the possible mechanisms responsible of cancer cell death. It thus aims to pave the way for the use of US in cancer therapy and a better understanding on the non-thermal effect that a specific set of US parameters can have on cancer cells cultured <i>in vitro</i>.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00635-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4954916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Compartmentalized organ-on-a-chip structure for spatiotemporal control of oxygen microenvironments 用于氧微环境时空控制的分区器官芯片结构
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-10-21 DOI: 10.1007/s10544-022-00634-y
Kaisa Tornberg, Hannu Välimäki, Silmu Valaskivi, Antti-Juhana Mäki, Matias Jokinen, Joose Kreutzer, Pasi Kallio
{"title":"Compartmentalized organ-on-a-chip structure for spatiotemporal control of oxygen microenvironments","authors":"Kaisa Tornberg,&nbsp;Hannu Välimäki,&nbsp;Silmu Valaskivi,&nbsp;Antti-Juhana Mäki,&nbsp;Matias Jokinen,&nbsp;Joose Kreutzer,&nbsp;Pasi Kallio","doi":"10.1007/s10544-022-00634-y","DOIUrl":"10.1007/s10544-022-00634-y","url":null,"abstract":"<div><p>Hypoxia is a condition where tissue oxygen levels fall below normal levels. In locally induced hypoxia due to blood vessel blockage, oxygen delivery becomes compromised. The site where blood flow is diminished the most forms a zero-oxygen core, and different oxygenation zones form around this core with varying oxygen concentrations. Naturally, these differing oxygen microenvironments drive cells to respond according to their oxygenation status. To study these cellular processes in laboratory settings, the cellular gas microenvironments should be controlled rapidly and precisely. In this study, we propose an organ-on-a-chip device that provides control over the oxygen environments in three separate compartments as well as the possibility of rapidly changing the corresponding oxygen concentrations. The proposed device includes a microfluidic channel structure with three separate arrays of narrow microchannels that guide gas mixtures with desired oxygen concentrations to diffuse through a thin gas-permeable membrane into cell culture areas. The proposed microfluidic channel structure is characterized using a 2D ratiometric oxygen imaging system, and the measurements confirm that the oxygen concentrations at the cell culture surface can be modulated in a few minutes. The structure is capable of creating hypoxic oxygen tension, and distinct oxygen environments can be generated simultaneously in the three compartments. By combining the microfluidic channel structure with an open-well coculture device, multicellular cultures can be established together with compartmentalized oxygen environment modulation. We demonstrate that the proposed compartmentalized organ-on-a-chip structure is suitable for cell culture.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00634-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4836359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A multi-material platform for imaging of single cell-cell junctions under tensile load fabricated with two-photon polymerization 用双光子聚合技术制备了一种用于拉伸载荷下单细胞-细胞连接成像的多材料平台
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-10-08 DOI: 10.1007/s10544-022-00633-z
Jordan Rosenbohm, Grayson Minnick, Bahareh Tajvidi Safa, Amir Monemian Esfahani, Xiaowei Jin, Haiwei Zhai, Nickolay V. Lavrik, Ruiguo Yang
{"title":"A multi-material platform for imaging of single cell-cell junctions under tensile load fabricated with two-photon polymerization","authors":"Jordan Rosenbohm,&nbsp;Grayson Minnick,&nbsp;Bahareh Tajvidi Safa,&nbsp;Amir Monemian Esfahani,&nbsp;Xiaowei Jin,&nbsp;Haiwei Zhai,&nbsp;Nickolay V. Lavrik,&nbsp;Ruiguo Yang","doi":"10.1007/s10544-022-00633-z","DOIUrl":"10.1007/s10544-022-00633-z","url":null,"abstract":"<div><p>We previously reported a single-cell adhesion micro tensile tester (SCAμTT) fabricated from IP-S photoresin with two-photon polymerization (TPP) for investigating the mechanics of a single cell-cell junction under defined tensile loading. A major limitation of the platform is the autofluorescence of IP-S, the photoresin for TPP fabrication, which significantly increases background signal and makes fluorescent imaging of stretched cells difficult. In this study, we report the design and fabrication of a new SCAμTT platform that mitigates autofluorescence and demonstrate its capability in imaging a single cell pair as its mutual junction is stretched. By employing a two-material design using IP-S and IP-Visio, a photoresin with reduced autofluorescence, we show a significant reduction in autofluorescence of the platform. Further, by integrating apertures onto the substrate with a gold coating, the influence of autofluorescence on imaging is almost completely mitigated. With this new platform, we demonstrate the ability to image a pair of epithelial cells as they are stretched up to 250% strain, allowing us to observe junction rupture and F-actin retraction while simultaneously recording the accumulation of over 800 kPa of stress in the junction. The platform and methodology presented here can potentially enable detailed investigation of the mechanics of and mechanotransduction in cell-cell junctions and improve the design of other TPP platforms in mechanobiology applications.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00633-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4363945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Biosensors for detection of prostate cancer: a review 生物传感器检测前列腺癌的研究进展
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-09-28 DOI: 10.1007/s10544-022-00631-1
Sourav Sarkar, Manashjit Gogoi, Mrityunjoy Mahato, Abhijeet Balwantrao Joshi, Arup Jyoti Baruah, Prashant Kodgire, Polina Boruah
{"title":"Biosensors for detection of prostate cancer: a review","authors":"Sourav Sarkar,&nbsp;Manashjit Gogoi,&nbsp;Mrityunjoy Mahato,&nbsp;Abhijeet Balwantrao Joshi,&nbsp;Arup Jyoti Baruah,&nbsp;Prashant Kodgire,&nbsp;Polina Boruah","doi":"10.1007/s10544-022-00631-1","DOIUrl":"10.1007/s10544-022-00631-1","url":null,"abstract":"<div><p>Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.\u0000</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00631-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5099929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A flexible implantable microelectrode array for recording electrocorticography signals from rodents 用于记录啮齿动物皮质电成像信号的柔性植入微电极阵列
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-09-17 DOI: 10.1007/s10544-022-00632-0
Suman Chatterjee, Tushar Sakorikar, Arjun BS, Rathin K. Joshi, Abhay Sikaria, Mahesh Jayachandra, Vikas V, Hardik J. Pandya
{"title":"A flexible implantable microelectrode array for recording electrocorticography signals from rodents","authors":"Suman Chatterjee,&nbsp;Tushar Sakorikar,&nbsp;Arjun BS,&nbsp;Rathin K. Joshi,&nbsp;Abhay Sikaria,&nbsp;Mahesh Jayachandra,&nbsp;Vikas V,&nbsp;Hardik J. Pandya","doi":"10.1007/s10544-022-00632-0","DOIUrl":"10.1007/s10544-022-00632-0","url":null,"abstract":"<div><p>Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time–frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.\u0000</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4704586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dielectrophoretic separation of blood cells 介电分离血细胞的方法
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-08-25 DOI: 10.1007/s10544-022-00623-1
Maria E. P. Emmerich, Anne-Sophie Sinnigen, Peter Neubauer, Mario Birkholz
{"title":"Dielectrophoretic separation of blood cells","authors":"Maria E. P. Emmerich,&nbsp;Anne-Sophie Sinnigen,&nbsp;Peter Neubauer,&nbsp;Mario Birkholz","doi":"10.1007/s10544-022-00623-1","DOIUrl":"10.1007/s10544-022-00623-1","url":null,"abstract":"<div><p>Microfluidic dielectrophoretic (DEP) devices enable the label-free separation and isolation of cells based on differences in their electrophysiological properties. The technique can serve as a tool in clinical diagnostics and medical research as it facilitates the analysis of patient-specific blood composition and the detection and isolation of pathogenic cells like circulating tumor cells or malaria-infected erythrocytes. This review compares different microfluidic DEP devices to separate platelets, erythrocytes and leukocytes including their cellular subclasses. An overview and experimental setups of different microfluidic DEP devices for the separation, trapping and isolation or purification of blood cells are detailed with respect to their technical design, electrode configuration, sample preparation, applied voltage and frequency and created DEP field based and related to the separation efficiency. The technique holds the promise that results can quickly be attained in clinical and ambulant settings. In particular, point-of-care-testing scenarios are favored by the extensive miniaturization, which would be enabled by microelectronical integration of DEP devices.\u0000</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40415735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Graphene and graphene nanohybrid composites-based electrodes for physiological sensing applications 基于石墨烯和石墨烯纳米复合材料的生理传感电极应用
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-08-23 DOI: 10.1007/s10544-022-00630-2
Bani Gandhi, Nallanthighal Srinivasa Raghava
{"title":"Graphene and graphene nanohybrid composites-based electrodes for physiological sensing applications","authors":"Bani Gandhi,&nbsp;Nallanthighal Srinivasa Raghava","doi":"10.1007/s10544-022-00630-2","DOIUrl":"10.1007/s10544-022-00630-2","url":null,"abstract":"<div><p>In this paper, three categories of ECG electrodes were fabricated. Graphene/PDMS(Polydimethylsiloxane)(G-I), Graphene/MWCNT-COOH(Carboxylic-acid functionalized Multi-walled Carbon Nanotubes)/PDMS(G-II),and Graphene/SWCNT-COOH(Carboxylic-acid functionalized Single-walled Carbon Nanotubes)/PDMS(G-III). Each group had thirteen electrodes with varying concentrations ranging from 0.1-5wt%. Since CNTs get tangled easily, it becomes necessary to disperse them properly. To achieve optimal dispersion, CNTs were first sonicated with Isopropyl Alcohol (IPA), and then with PDMS. Mold casting was the technique used for fabricating the electrodes. The results were compared with the conventional ECG electrodes. Best results were achieved from G-III at 3wt% as the value of capacitance is high (0.172nF) as compared to G-I and G-III values at 3wt% which are 0.036nF (0.036nF) and 0.015nF respectively. As capacitance has an inverse relationship with the resistance and impedance, thus at 3wt% the resistance (0.361MΩ) and impedance (0.36MΩ) values are low, which satisfies the relationship. The values of resistance and impedance of G-II are low when compared with the values of G-I and G-II. Great results and ECG waveform are achieved with 3wt% for G-II, which also uses less nanomaterials to produce such great ECG results. It was observed that even after using the electrodes for 5 days, the ECG signal did not degrade over time and no skin allergies were detected for any of the three groups. The ECG tracking system was developed on the concept of the Internet-of-Things (IoT) using various electronic hardware components and software solutions. The results from the fabricated electrodes were promising and were suitable for long-term, and continuous ECG monitoring.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00630-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40436455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-action of colloidal ISCOMs: an optimized approach using Box-Behnken design for the management of breast cancer 胶体iscom的双重作用:一种使用Box-Behnken设计的乳腺癌管理优化方法
IF 2.8 4区 医学
Biomedical Microdevices Pub Date : 2022-08-20 DOI: 10.1007/s10544-022-00625-z
Drashti Desai, Pravin Shende
{"title":"Dual-action of colloidal ISCOMs: an optimized approach using Box-Behnken design for the management of breast cancer","authors":"Drashti Desai,&nbsp;Pravin Shende","doi":"10.1007/s10544-022-00625-z","DOIUrl":"10.1007/s10544-022-00625-z","url":null,"abstract":"<div><p>Neuropeptide Y (NPY) occurs in G-protein-coupled receptors and offers targeted effects at the active sites for therapeutic action in various conditions like depression, stress, obesity and cancer. Immune stimulating complexes (ISCOMs) associate peptides with the lipid systems for enhancing antigen targeting to provide site-specific action and B-cell response. The present study focused on the encapsulation of NPY in ISCOMs to comprise dual action in the form of immunity modulation and management of breast cancer by arresting G0/G1 phase. The colloidal ISCOMs were prepared by coupling method and further optimized by Box-Behnken design of Design of Experiment (DoE) software. The NPY-loaded ISCOMs (formulation ISCN) were characterized by various parameters with higher % encapsulation efficiency of 87.99 ± 1.87% and <i>in-vitro</i> release of 84.16±3.2% of NPY for 24 h. The study of MTT assay on MCF-7 cell line for formulation ISCN exhibited a significant decrease in the cell growth of 66.41±4.7% at 10 µg/mL compared to plain NPY (52.21±0.04%). The MCF-7 cells showed a significant reduction in cytokine levels in the presence of formulation ISCN wherein T<sub>H</sub>1(TNF-α) and T<sub>H</sub>2(IL-10) levels were found to be 25.12±3.11 pg/mL and 35.76±4.23 pg/mL, respectively. The cell cycle study demonstrated that significant cells were blocked in the G0/G1 phase with 57.8±3.02% of cell apoptosis using formulation ISCN. The formulation ISCN was found to prolong t<sub>1/2</sub> and increase AUC than plain NPY via intravenous administration due to complex formation with phospholipid. Hence, ISCOMs-based NPY system will be a promising approach for dual action as immunomodulation and anticancer effects by controlling the release of NPY.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40641254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信