Gwangjin Choi, Yoonhee Ha, Doo-Hee Kim, Soowon Shin, Junewoo Hyun, Sangwoo Kim, Seung-Ha Oh, Kyou-Sik Min
{"title":"Assessing the manufacturable 32-channel cochlear electrode array: evaluation results for clinical trials","authors":"Gwangjin Choi, Yoonhee Ha, Doo-Hee Kim, Soowon Shin, Junewoo Hyun, Sangwoo Kim, Seung-Ha Oh, Kyou-Sik Min","doi":"10.1007/s10544-023-00681-z","DOIUrl":null,"url":null,"abstract":"<div><p>Reliability evaluation results of a manufacturable 32-channel cochlear electrode array are reported in this paper. Applying automated laser micro-machining process and a layer-by-layer silicone deposition scheme, authors developed the manufacturing methods of the electrode array for fine patterning and mass production. The developed electrode array has been verified through the requirements specified by the ISO Standard 14708-7. And the insertion trauma of the electrode array has been evaluated based on human temporal bone studies. According to the specified requirements, the electrode array was assessed through elongation & insulation, flexural, and fatigue tests. In addition, Temporal bone study was performed using eight fresh-frozen cadaver temporal bones with the electrode arrays inserted via the round window. Following soaking in saline condition, the impedances between conducting wires of the electrode array were measured over 100 kΩ (the pass/fail criterion). After each required test, it was shown that the electrode array maintained the electrical continuity and insulation condition. The average insertion angle of the electrode array inside the scala tympani was 399.7°. The human temporal bone studies exhibited atraumatic insertion rate of 60.3% (grade 0 or 1). The reliability of the manufacturable electrode array is successfully verified in mechanical, electrical, and histological aspects. Following the completion of a 32-channel cochlear implant system, the performance and stability of the 32-channel electrode array will be evaluated in clinical trials.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00681-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reliability evaluation results of a manufacturable 32-channel cochlear electrode array are reported in this paper. Applying automated laser micro-machining process and a layer-by-layer silicone deposition scheme, authors developed the manufacturing methods of the electrode array for fine patterning and mass production. The developed electrode array has been verified through the requirements specified by the ISO Standard 14708-7. And the insertion trauma of the electrode array has been evaluated based on human temporal bone studies. According to the specified requirements, the electrode array was assessed through elongation & insulation, flexural, and fatigue tests. In addition, Temporal bone study was performed using eight fresh-frozen cadaver temporal bones with the electrode arrays inserted via the round window. Following soaking in saline condition, the impedances between conducting wires of the electrode array were measured over 100 kΩ (the pass/fail criterion). After each required test, it was shown that the electrode array maintained the electrical continuity and insulation condition. The average insertion angle of the electrode array inside the scala tympani was 399.7°. The human temporal bone studies exhibited atraumatic insertion rate of 60.3% (grade 0 or 1). The reliability of the manufacturable electrode array is successfully verified in mechanical, electrical, and histological aspects. Following the completion of a 32-channel cochlear implant system, the performance and stability of the 32-channel electrode array will be evaluated in clinical trials.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.