Aram Rostami, Vahid Molabashi, Saber Ganji, Seyedeh Parvaneh Moosavi, Alireza Koushki, Sonia Fathi-Karkan, Kianoosh Ghaderi, Mehdi Shahgolzari
{"title":"Chlorhexidine loaded nanomaterials for dental plaque control: enhanced antibacterial activity and biocompatibility.","authors":"Aram Rostami, Vahid Molabashi, Saber Ganji, Seyedeh Parvaneh Moosavi, Alireza Koushki, Sonia Fathi-Karkan, Kianoosh Ghaderi, Mehdi Shahgolzari","doi":"10.1007/s10544-025-00755-0","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorhexidine (Chx) is a commonly used antimicrobial agent in dentistry, but its effectiveness can be limited due to rapid clearance, potential cytotoxicity, and insufficient tissue penetration. Nanomaterials have been developed as carriers for Chx, can offer a solution by adapting to environmental changes during disease states and enabling targeted drug delivery. This study explores Chx-loaded nanomaterials, which show enhanced antibacterial properties, promote tissue regeneration, and facilitate drug diffusion. Results show sustained drug release profiles and significantly enhanced antimicrobial activity compared to free Chx. In vitro studies confirm their effectiveness against key dental pathogens while maintaining excellent biocompatibility with human gingival fibroblasts and periodontal ligament cells. Future research should focus on optimizing the formulation and delivery methods of these nanomaterials to ensure safe, effective treatment of dental infections.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":"28"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10544-025-00755-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorhexidine (Chx) is a commonly used antimicrobial agent in dentistry, but its effectiveness can be limited due to rapid clearance, potential cytotoxicity, and insufficient tissue penetration. Nanomaterials have been developed as carriers for Chx, can offer a solution by adapting to environmental changes during disease states and enabling targeted drug delivery. This study explores Chx-loaded nanomaterials, which show enhanced antibacterial properties, promote tissue regeneration, and facilitate drug diffusion. Results show sustained drug release profiles and significantly enhanced antimicrobial activity compared to free Chx. In vitro studies confirm their effectiveness against key dental pathogens while maintaining excellent biocompatibility with human gingival fibroblasts and periodontal ligament cells. Future research should focus on optimizing the formulation and delivery methods of these nanomaterials to ensure safe, effective treatment of dental infections.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.