Daniella R Hammer, François Voruz, Aykut Aksit, Eugénie Breil, Francis Rousset, Pascal Senn, Sten Ilmjärv, Elizabeth S Olson, Anil K Lalwani, Jeffrey W Kysar
{"title":"新型双腔微针通过圆窗膜在豚鼠内耳内传递腺相关病毒载体。","authors":"Daniella R Hammer, François Voruz, Aykut Aksit, Eugénie Breil, Francis Rousset, Pascal Senn, Sten Ilmjärv, Elizabeth S Olson, Anil K Lalwani, Jeffrey W Kysar","doi":"10.1007/s10544-025-00751-4","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical need for minimally invasive inner ear diagnostics and therapeutics has grown rapidly in recent years, particularly with the development of gene therapies for treating hearing and balance disorders. These therapies often require delivery of large injectate volumes that can cause hearing damage. In response to this challenge, dual-lumen microneedles, with two separate fluidic pathways controlled independently by micropumps, were designed for simultaneous aspiration and delivery to the inner ear across the round window membrane (RWM) and were fabricated using 2-photon polymerization (2PP). To assess the proof of concept of the dual-lumen microneedle device, simultaneous injection of 5 µL of adeno-associated virus (AAV) expressing green fluorescent protein (GFP) and aspiration of 5 µL of perilymph was performed in guinea pigs in vivo. Hearing thresholds were measured using auditory brainstem response (ABR) at time points before and 1 week after the procedure. Confocal imaging of the cochlea, the utricle, and the contralateral inner ear was employed to quantify and characterize the spatial distribution of hair cells with AAV transduction. Dual-lumen microneedle devices were found to be functional in the surgical setting. There was hearing loss limited to higher frequencies of 24 kHz and 28 kHz with ABR mean threshold shifts of 13 dB sound pressure level (SPL) (p = 0.03) and 23 dB SPL (p < 0.01), respectively. Furthermore, cochlear AAV transduction with a stereotypical basoapical gradient was observed in all animals (n = 5). Thus, dual-lumen microneedles can facilitate delivery of large volumes of therapeutic material into the inner ear, overcoming the limitations of single-lumen microneedles.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":"27"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel dual-lumen microneedle delivers adeno-associated viral vectors in the guinea pig inner ear via the round window membrane.\",\"authors\":\"Daniella R Hammer, François Voruz, Aykut Aksit, Eugénie Breil, Francis Rousset, Pascal Senn, Sten Ilmjärv, Elizabeth S Olson, Anil K Lalwani, Jeffrey W Kysar\",\"doi\":\"10.1007/s10544-025-00751-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical need for minimally invasive inner ear diagnostics and therapeutics has grown rapidly in recent years, particularly with the development of gene therapies for treating hearing and balance disorders. These therapies often require delivery of large injectate volumes that can cause hearing damage. In response to this challenge, dual-lumen microneedles, with two separate fluidic pathways controlled independently by micropumps, were designed for simultaneous aspiration and delivery to the inner ear across the round window membrane (RWM) and were fabricated using 2-photon polymerization (2PP). To assess the proof of concept of the dual-lumen microneedle device, simultaneous injection of 5 µL of adeno-associated virus (AAV) expressing green fluorescent protein (GFP) and aspiration of 5 µL of perilymph was performed in guinea pigs in vivo. Hearing thresholds were measured using auditory brainstem response (ABR) at time points before and 1 week after the procedure. Confocal imaging of the cochlea, the utricle, and the contralateral inner ear was employed to quantify and characterize the spatial distribution of hair cells with AAV transduction. Dual-lumen microneedle devices were found to be functional in the surgical setting. There was hearing loss limited to higher frequencies of 24 kHz and 28 kHz with ABR mean threshold shifts of 13 dB sound pressure level (SPL) (p = 0.03) and 23 dB SPL (p < 0.01), respectively. Furthermore, cochlear AAV transduction with a stereotypical basoapical gradient was observed in all animals (n = 5). Thus, dual-lumen microneedles can facilitate delivery of large volumes of therapeutic material into the inner ear, overcoming the limitations of single-lumen microneedles.</p>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"27 2\",\"pages\":\"27\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10544-025-00751-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10544-025-00751-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Novel dual-lumen microneedle delivers adeno-associated viral vectors in the guinea pig inner ear via the round window membrane.
The clinical need for minimally invasive inner ear diagnostics and therapeutics has grown rapidly in recent years, particularly with the development of gene therapies for treating hearing and balance disorders. These therapies often require delivery of large injectate volumes that can cause hearing damage. In response to this challenge, dual-lumen microneedles, with two separate fluidic pathways controlled independently by micropumps, were designed for simultaneous aspiration and delivery to the inner ear across the round window membrane (RWM) and were fabricated using 2-photon polymerization (2PP). To assess the proof of concept of the dual-lumen microneedle device, simultaneous injection of 5 µL of adeno-associated virus (AAV) expressing green fluorescent protein (GFP) and aspiration of 5 µL of perilymph was performed in guinea pigs in vivo. Hearing thresholds were measured using auditory brainstem response (ABR) at time points before and 1 week after the procedure. Confocal imaging of the cochlea, the utricle, and the contralateral inner ear was employed to quantify and characterize the spatial distribution of hair cells with AAV transduction. Dual-lumen microneedle devices were found to be functional in the surgical setting. There was hearing loss limited to higher frequencies of 24 kHz and 28 kHz with ABR mean threshold shifts of 13 dB sound pressure level (SPL) (p = 0.03) and 23 dB SPL (p < 0.01), respectively. Furthermore, cochlear AAV transduction with a stereotypical basoapical gradient was observed in all animals (n = 5). Thus, dual-lumen microneedles can facilitate delivery of large volumes of therapeutic material into the inner ear, overcoming the limitations of single-lumen microneedles.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.