Distance-dependent spatial analysis of micropattern-generated shockwave for cell-type specific intracellular delivery.

IF 3.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Aniket Mishra, Shunya Okamoto, Takayuki Shibata, Tuhin Subhra Santra, Sangjin Ryu, Moeto Nagai
{"title":"Distance-dependent spatial analysis of micropattern-generated shockwave for cell-type specific intracellular delivery.","authors":"Aniket Mishra, Shunya Okamoto, Takayuki Shibata, Tuhin Subhra Santra, Sangjin Ryu, Moeto Nagai","doi":"10.1007/s10544-025-00758-x","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular delivery of therapeutic materials remains challenging, with conventional micropattern-assisted optoporation methods making it difficult to analyze the spatial effects of individual laser pulses. Here, we show that pigmented SU-8 microdisks enable precise analysis of distance-dependent shockwave effects on cell membrane permeabilization, achieving delivery yields up to 60% in optimized conditions. Using 20 μm and 50 μm microdisks irradiated by nanosecond laser pulses, we discovered that larger patterns generate more extensive shockwaves leading to increased cell damage over broader ranges, while smaller patterns maintain high delivery efficiency with minimal cellular disruption. Furthermore, cellular adhesion strength critically influences treatment outcomes: strongly adherent SAOS-2 cells showed remarkable resilience while weakly adherent HEK-293 cells experienced extensive damage at greater distances. Our results demonstrate how micropattern size and cell-specific properties determine the spatial extent and efficiency of shockwave-mediated delivery, providing a framework for optimizing intracellular delivery strategies while preserving cell viability.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 3","pages":"30"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10544-025-00758-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular delivery of therapeutic materials remains challenging, with conventional micropattern-assisted optoporation methods making it difficult to analyze the spatial effects of individual laser pulses. Here, we show that pigmented SU-8 microdisks enable precise analysis of distance-dependent shockwave effects on cell membrane permeabilization, achieving delivery yields up to 60% in optimized conditions. Using 20 μm and 50 μm microdisks irradiated by nanosecond laser pulses, we discovered that larger patterns generate more extensive shockwaves leading to increased cell damage over broader ranges, while smaller patterns maintain high delivery efficiency with minimal cellular disruption. Furthermore, cellular adhesion strength critically influences treatment outcomes: strongly adherent SAOS-2 cells showed remarkable resilience while weakly adherent HEK-293 cells experienced extensive damage at greater distances. Our results demonstrate how micropattern size and cell-specific properties determine the spatial extent and efficiency of shockwave-mediated delivery, providing a framework for optimizing intracellular delivery strategies while preserving cell viability.

微模式产生的细胞类型特异性细胞内传递冲击波的距离依赖空间分析。
治疗材料的细胞内递送仍然具有挑战性,传统的微模式辅助光学方法使得分析单个激光脉冲的空间效应变得困难。在这里,我们展示了色素SU-8微盘能够精确分析距离相关的冲击波对细胞膜渗透的影响,在优化条件下实现了高达60%的传递率。使用纳秒激光脉冲照射的20 μm和50 μm微磁盘,我们发现较大的图案产生更广泛的冲击波,导致更宽范围内的细胞损伤增加,而较小的图案保持高的传递效率,最小的细胞破坏。此外,细胞粘附强度严重影响治疗结果:强粘附的SAOS-2细胞表现出显著的弹性,而弱粘附的HEK-293细胞在更远的距离上遭受广泛的损伤。我们的研究结果证明了微模式大小和细胞特异性如何决定冲击波介导的递送的空间范围和效率,为优化细胞内递送策略提供了一个框架,同时保持细胞活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信