用于器官芯片技术的新型多孔硅生物膜的制备。

IF 3.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Marcus A C Williams, Cooper Wiens, Sahra Genc, Sally Thompson, Leif Gislason, David Blake, Jeff Jessing
{"title":"用于器官芯片技术的新型多孔硅生物膜的制备。","authors":"Marcus A C Williams, Cooper Wiens, Sahra Genc, Sally Thompson, Leif Gislason, David Blake, Jeff Jessing","doi":"10.1007/s10544-025-00760-3","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional in vitro and preclinical animal models often fail to accurately replicate the complexity of human diseases, limiting the success of translational studies and contributing to the low success rate of clinical trials (Ingber 2016). In response, research has increasingly focused on organ-on-chip technology, which better mimics human tissue interfaces and organ functionality. In this study, we describe the fabrication of a novel biomembrane made of porous silicon (PSi) for use in organ-on-chip systems. This biomembrane more accurately simulates the complex tissue interfaces observed in vivo compared to conventional organ-on-chip interfaces. By leveraging established semiconductor techniques, such as anisotropic chemical etching and electrochemical anodization, we developed a reproducible method to create ultra-thin freestanding PSi biomembranes. These membranes were thinned to approximately 10 μm and anodized to contain nanoporous structures (~ 15 nm diameter) that permeate the entire membrane. The incorporation of these membranes into organ-on-chip-like devices demonstrated their functionality in a lung-on-a-chip (LOAC) model system. The results indicate that the PSi biomembranes support cellular viability and adhesion, and are consistent with the expected diffusion of nutrients and signaling molecules between distinct cell types. This novel approach provides a reliable method for generating PSi biomembranes tailored to mimic tissue interfaces. The study underscores the potential of PSi-based membranes to enhance the accuracy and functionality of organ-on-chip devices in translational research.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 3","pages":"32"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a novel porous silicon biomembrane for applications in organ-on-chip technology.\",\"authors\":\"Marcus A C Williams, Cooper Wiens, Sahra Genc, Sally Thompson, Leif Gislason, David Blake, Jeff Jessing\",\"doi\":\"10.1007/s10544-025-00760-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional in vitro and preclinical animal models often fail to accurately replicate the complexity of human diseases, limiting the success of translational studies and contributing to the low success rate of clinical trials (Ingber 2016). In response, research has increasingly focused on organ-on-chip technology, which better mimics human tissue interfaces and organ functionality. In this study, we describe the fabrication of a novel biomembrane made of porous silicon (PSi) for use in organ-on-chip systems. This biomembrane more accurately simulates the complex tissue interfaces observed in vivo compared to conventional organ-on-chip interfaces. By leveraging established semiconductor techniques, such as anisotropic chemical etching and electrochemical anodization, we developed a reproducible method to create ultra-thin freestanding PSi biomembranes. These membranes were thinned to approximately 10 μm and anodized to contain nanoporous structures (~ 15 nm diameter) that permeate the entire membrane. The incorporation of these membranes into organ-on-chip-like devices demonstrated their functionality in a lung-on-a-chip (LOAC) model system. The results indicate that the PSi biomembranes support cellular viability and adhesion, and are consistent with the expected diffusion of nutrients and signaling molecules between distinct cell types. This novel approach provides a reliable method for generating PSi biomembranes tailored to mimic tissue interfaces. The study underscores the potential of PSi-based membranes to enhance the accuracy and functionality of organ-on-chip devices in translational research.</p>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"27 3\",\"pages\":\"32\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10544-025-00760-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10544-025-00760-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的体外和临床前动物模型往往不能准确地复制人类疾病的复杂性,限制了转化研究的成功,导致临床试验的成功率较低(Ingber 2016)。因此,研究越来越关注器官芯片技术,它能更好地模拟人体组织界面和器官功能。在这项研究中,我们描述了一种由多孔硅(PSi)制成的新型生物膜的制造,用于器官芯片系统。与传统的器官芯片界面相比,这种生物膜更准确地模拟了体内观察到的复杂组织界面。通过利用现有的半导体技术,如各向异性化学蚀刻和电化学阳极氧化,我们开发了一种可重复的方法来制造超薄的独立PSi生物膜。这些膜被薄至约10 μm,并经过阳极氧化,含有纳米孔结构(~ 15 nm直径),渗透整个膜。将这些膜结合到类似器官芯片的设备中,证明了它们在肺芯片(LOAC)模型系统中的功能。结果表明,PSi生物膜支持细胞活力和粘附,并且与预期的营养物质和信号分子在不同细胞类型之间的扩散一致。这种新颖的方法为生成适合模拟组织界面的PSi生物膜提供了一种可靠的方法。该研究强调了基于psi的膜在转化研究中提高器官芯片设备的准确性和功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of a novel porous silicon biomembrane for applications in organ-on-chip technology.

Conventional in vitro and preclinical animal models often fail to accurately replicate the complexity of human diseases, limiting the success of translational studies and contributing to the low success rate of clinical trials (Ingber 2016). In response, research has increasingly focused on organ-on-chip technology, which better mimics human tissue interfaces and organ functionality. In this study, we describe the fabrication of a novel biomembrane made of porous silicon (PSi) for use in organ-on-chip systems. This biomembrane more accurately simulates the complex tissue interfaces observed in vivo compared to conventional organ-on-chip interfaces. By leveraging established semiconductor techniques, such as anisotropic chemical etching and electrochemical anodization, we developed a reproducible method to create ultra-thin freestanding PSi biomembranes. These membranes were thinned to approximately 10 μm and anodized to contain nanoporous structures (~ 15 nm diameter) that permeate the entire membrane. The incorporation of these membranes into organ-on-chip-like devices demonstrated their functionality in a lung-on-a-chip (LOAC) model system. The results indicate that the PSi biomembranes support cellular viability and adhesion, and are consistent with the expected diffusion of nutrients and signaling molecules between distinct cell types. This novel approach provides a reliable method for generating PSi biomembranes tailored to mimic tissue interfaces. The study underscores the potential of PSi-based membranes to enhance the accuracy and functionality of organ-on-chip devices in translational research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信