{"title":"基于纳米结构传感器的DNA电化学评价研究进展。","authors":"Lue Wang, Waye Zhang","doi":"10.1007/s10544-025-00763-0","DOIUrl":null,"url":null,"abstract":"<p><p>Screening the amount of DNA closely related to early diagnosis of diseases or decoding information in target DNA sequences for biological medicine, infectious identification, or forensic analysis are highly essential in our daily life. This review provides clear understanding of nanostructured sensors (i.e., functionalized electrode-based sensors and nanopores) working for electrochemical assessment of DNA, along with their recent advances and unaddressed issues. Crucial constituents for sensor functionalization, electrochemical techniques, and electrodes, used in functionalized electrode-based sensors are briefly introduced, followed by analysis of using this type of sensors for DNA determination and the comparison of performances such as dynamic ranges and detection limits with other similar works. Subsequently, nanopore sensors including porin-based and solid-state nanopores applied for DNA sequencing are the other interests of discussion in the review. Beyond the achievement of high-resolution DNA sequencing based on porins coupled with enzymatic components, commonly used methods to solid-state nanopore creation, practical use of solid-state nanopores in DNA analysis, and computational modeling for nucleobase pore-threading simulation are depicted in more detail. Finally, conclusions in relation to recent advances and future developments are described. This work offers a powerful guideline for electrochemical assessment of DNA using either functionalized electrode-based sensors or nanopores, enabling scientific groups to have an entire picture upon electrochemical nanodevices used for DNA characterization.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 3","pages":"36"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent progress in electrochemical assessment of DNA based on nanostructured sensors.\",\"authors\":\"Lue Wang, Waye Zhang\",\"doi\":\"10.1007/s10544-025-00763-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Screening the amount of DNA closely related to early diagnosis of diseases or decoding information in target DNA sequences for biological medicine, infectious identification, or forensic analysis are highly essential in our daily life. This review provides clear understanding of nanostructured sensors (i.e., functionalized electrode-based sensors and nanopores) working for electrochemical assessment of DNA, along with their recent advances and unaddressed issues. Crucial constituents for sensor functionalization, electrochemical techniques, and electrodes, used in functionalized electrode-based sensors are briefly introduced, followed by analysis of using this type of sensors for DNA determination and the comparison of performances such as dynamic ranges and detection limits with other similar works. Subsequently, nanopore sensors including porin-based and solid-state nanopores applied for DNA sequencing are the other interests of discussion in the review. Beyond the achievement of high-resolution DNA sequencing based on porins coupled with enzymatic components, commonly used methods to solid-state nanopore creation, practical use of solid-state nanopores in DNA analysis, and computational modeling for nucleobase pore-threading simulation are depicted in more detail. Finally, conclusions in relation to recent advances and future developments are described. This work offers a powerful guideline for electrochemical assessment of DNA using either functionalized electrode-based sensors or nanopores, enabling scientific groups to have an entire picture upon electrochemical nanodevices used for DNA characterization.</p>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"27 3\",\"pages\":\"36\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10544-025-00763-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10544-025-00763-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Recent progress in electrochemical assessment of DNA based on nanostructured sensors.
Screening the amount of DNA closely related to early diagnosis of diseases or decoding information in target DNA sequences for biological medicine, infectious identification, or forensic analysis are highly essential in our daily life. This review provides clear understanding of nanostructured sensors (i.e., functionalized electrode-based sensors and nanopores) working for electrochemical assessment of DNA, along with their recent advances and unaddressed issues. Crucial constituents for sensor functionalization, electrochemical techniques, and electrodes, used in functionalized electrode-based sensors are briefly introduced, followed by analysis of using this type of sensors for DNA determination and the comparison of performances such as dynamic ranges and detection limits with other similar works. Subsequently, nanopore sensors including porin-based and solid-state nanopores applied for DNA sequencing are the other interests of discussion in the review. Beyond the achievement of high-resolution DNA sequencing based on porins coupled with enzymatic components, commonly used methods to solid-state nanopore creation, practical use of solid-state nanopores in DNA analysis, and computational modeling for nucleobase pore-threading simulation are depicted in more detail. Finally, conclusions in relation to recent advances and future developments are described. This work offers a powerful guideline for electrochemical assessment of DNA using either functionalized electrode-based sensors or nanopores, enabling scientific groups to have an entire picture upon electrochemical nanodevices used for DNA characterization.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.