{"title":"Personalized evaluation of the passive myocardium in ischemic cardiomyopathy via computational modeling using Bayesian optimization","authors":"Saeed Torbati, Alireza Daneshmehr, Hamidreza Pouraliakbar, Masoud Asgharian, Seyed Hossein Ahmadi Tafti, Dominique Shum-Tim, Alireza Heidari","doi":"10.1007/s10237-024-01856-0","DOIUrl":"10.1007/s10237-024-01856-0","url":null,"abstract":"<div><p>Biomechanics-based patient-specific modeling is a promising approach that has proved invaluable for its clinical potential to assess the adversities caused by ischemic heart disease (IHD). In the present study, we propose a framework to find the passive material properties of the myocardium and the unloaded shape of cardiac ventricles simultaneously in patients diagnosed with ischemic cardiomyopathy (ICM). This was achieved by minimizing the difference between the simulated and the target end-diastolic pressure–volume relationships (EDPVRs) using black-box Bayesian optimization, based on the finite element analysis (FEA). End-diastolic (ED) biventricular geometry and the location of the ischemia were determined from cardiac magnetic resonance (CMR) imaging. We employed our pipeline to model the cardiac ventricles of three patients aged between 57 and 66 years, with and without the inclusion of valves. An excellent agreement between the simulated and the target EDPVRs has been reached. Our results revealed that the incorporation of valvular springs typically leads to lower hyperelastic parameters for both healthy and ischemic myocardium, as well as a higher fiber Green strain in the viable regions compared to models without valvular stiffness. Furthermore, the addition of valve-related effects did not result in significant changes in myofiber stress after optimization. We concluded that more accurate results could be obtained when cardiac valves were considered in modeling ventricles. The present novel and practical methodology paves the way for developing digital twins of ischemic cardiac ventricles, providing a non-invasive assessment for designing optimal personalized therapies in precision medicine.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1591 - 1606"},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Callyn J. Kozitza, Mitchel J. Colebank, Juan Pablo Gonzalez-Pereira, Naomi C. Chesler, Luke Lamers, Alejandro Roldán-Alzate, Colleen M. Witzenburg
{"title":"Estimating pulmonary arterial remodeling via an animal-specific computational model of pulmonary artery stenosis","authors":"Callyn J. Kozitza, Mitchel J. Colebank, Juan Pablo Gonzalez-Pereira, Naomi C. Chesler, Luke Lamers, Alejandro Roldán-Alzate, Colleen M. Witzenburg","doi":"10.1007/s10237-024-01850-6","DOIUrl":"10.1007/s10237-024-01850-6","url":null,"abstract":"<div><p>Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1469 - 1490"},"PeriodicalIF":3.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of cardiopulmonary bypass parameters on embolus transport in a patient-specific aorta","authors":"Nafis M. Arefin, Bryan C. Good","doi":"10.1007/s10237-024-01867-x","DOIUrl":"10.1007/s10237-024-01867-x","url":null,"abstract":"<div><p>Neurological complexities resulting from surgery requiring cardiopulmonary bypass (CPB) remain a major concern, encompassing a spectrum of complications including thromboembolic stroke and various cognitive impairments. Surgical manipulation during CPB is considered the primary cause of these neurological complications. This study addresses the overall lack of knowledge concerning CPB hemodynamics within the aorta, employing a combined experimental-computational modeling approach, featuring computational fluid dynamics simulations validated with an in vitro CPB flow loop under steady conditions. Parametric studies were systematically performed, varying parameters associated with CPB techniques (pump flow rate and hemodiluted blood viscosity) and properties related to formed emboli (size and density). This represents the first comprehensive investigation into the individual and combined effects of these factors. Our findings reveal critical insights into the operating conditions of CPB, indicating a positive correlation between pump flow rate and emboli transport into the aortic branches, potentially increasing the risk of stroke. It was also found that larger emboli were more often transported into the aortic branches at higher pump flow rates, while smaller emboli preferred lower flow rates. Further, as blood is commonly diluted during CPB to decrease its viscosity, more emboli were found to enter the aortic branches with greater hemodilution. The combined effects of these parameters are captured using the non-dimensional Stokes number, which was found to positively correlate with emboli transport into the aortic branches. These findings contribute to our understanding of embolic stroke risk factors during CPB and shed light on the complex interplay between CPB parameters.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1765 - 1780"},"PeriodicalIF":3.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noor Al-Zanoon, Jacqueline Cummine, Caroline C. Jeffery, Lindsey Westover, Daniel Aalto
{"title":"The effect of simulated radiation induced fibrosis on tongue protrusion","authors":"Noor Al-Zanoon, Jacqueline Cummine, Caroline C. Jeffery, Lindsey Westover, Daniel Aalto","doi":"10.1007/s10237-024-01860-4","DOIUrl":"10.1007/s10237-024-01860-4","url":null,"abstract":"<div><p>Radiation therapy (RT) is an important adjuvant and primary treatment modality for head and neck cancers. A severe side effect of RT is fibrosis or scarring of muscle tissues of the oral cavity including the tongue. Previous studies have demonstrated that increased radiation doses to the oral cavity structures have led to decrements in function, hypothesized to result from changes in muscle tissue properties that affect the tongue’s function. To understand the complex relationship between tongue muscle fibrosis and tongue function, the current study used a virtual biomechanical model of the tongue. Fibrosis parameters including density (high, low), area (large, small) and location (946 node centres) were systematically varied in the model to test its impact on a target tongue tip motion (protrusion). The impact of fibrosis lesion parameters on three directional components of the tip (anterior-inferior, lateral-medial, and superior-inferior) were analyzed using multi linear regression models. Increases in density and area of fibrosis significantly predicted tongue protrusion movements compared to baseline. In the anterior–posterior direction, reductions in the tongue protrusion were observed. In the inferior-superior direction, the tongue height remained above baseline for the majority of cases. In the lateral-medial direction, ipsilateral deviations were observed. The location of fibrosis modulated these three main effects by either amplifying the observed effect or minimizing it. The findings support the hypothesis that changes in muscle tissue properties because of fibrosis impact tongue function. Increases in density and area of fibrosis impact key muscles in the target motion. The range of modulating effects of the lesion location (i.e., either amplifying or minimizing certain impact patterns) highlights the intricacy of tongue anatomy/soft tissue biomechanics and may suggest that lesions in any location will compromise the tongue’s movement.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1649 - 1660"},"PeriodicalIF":3.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saba Khaksar, Mehrad Paknezhad, Maysam Saidi, Kaveh Ahookhosh
{"title":"Numerical modeling of particle deposition in a realistic respiratory airway using CFD–DPM and genetic algorithm","authors":"Saba Khaksar, Mehrad Paknezhad, Maysam Saidi, Kaveh Ahookhosh","doi":"10.1007/s10237-024-01861-3","DOIUrl":"10.1007/s10237-024-01861-3","url":null,"abstract":"<div><p>In this study, a realistic model of the respiratory tract obtained from CT medical images was used to solve the flow field and particle motion using the Eulerian–Lagrangian approach to obtain the maximum particle deposition in the bronchial tree for the main purpose of optimizing the performance of drug delivery devices. The effects of different parameters, including particle diameter, particle shape factor, and air velocity, on the airflow field and particle deposition pattern in different zones of the lung were investigated. In addition, a genetic algorithm was employed to obtain the maximum particle deposition in the bronchial tree and the effect of the aforementioned parameters on particle deposition. Reverse flow, vortex formation, and laryngeal jet all affect the airflow structure and particle deposition pattern. The mouth–throat region had the highest deposition fraction at various flow rates. A change in the deposition pattern with an increased deposition fraction in the throat was observed owing to the increased diameter and shape factor of the particles, resulting from the higher inertia and drag force, respectively. The particle deposition analysis showed that three parameters, shape factor, diameter, and velocity, are directly related to particle deposition, and the diameter is the most effective parameter for particle deposition, with an effect of 60% compared to the shape factor and velocity. Finally, the prediction of the genetic algorithm reported a maximum particle deposition in the bronchial tree of 17%, whereas, based on the numerical results, the maximum particle deposition was reported to be 16%. Therefore, there is a 1% difference between the prediction of the genetic algorithm and the numerical results, which indicates the high accuracy of the prediction of the genetic algorithm.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1661 - 1677"},"PeriodicalIF":3.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation of plaque formation in a realistic geometry of a human aorta: effects of endothelial layer properties, heart rate, and hypertension","authors":"Amirabbas Benvidi, Bahar Firoozabadi","doi":"10.1007/s10237-024-01864-0","DOIUrl":"10.1007/s10237-024-01864-0","url":null,"abstract":"<div><p>Nowadays, cardiovascular diseases are the most common cause of death worldwide. Besides, atherosclerosis is a cardiovascular disease that occurs with persistent narrowing of arteries, especially medium and large-sized arteries. Atherosclerosis begins with a local elevation in the permeability of the arterial wall as a result of endothelial inflammation. Subsequently, excess LDL permeates into the arterial wall. Then, through several chemical responses and reactions, foam cells are produced. These foam cells serve as a crucial indicator for assessing the development of atherosclerosis within the arteries. In this study, the effect of endothelial layer modeling, heart rate (HR) and hypertension on the foam cell accumulation is numerically investigated in a patient-specific geometry of the human thoracic aorta. Navier–Stokes, Darcy, and mass transfer equations are used to obtain the velocity and concentration field within the domain. Regarding the dependence of endothelial cell properties on time-averaged wall shear stress, it is observed that foam cells are mainly concentrated in the outer curvature of the aortic arch, downstream of the left subclavian artery. However, considering oscillatory-shear-rate as the determinant of endothelial cell properties leads to the accumulation of foam cells in the inner curvature of the descending aorta. Regarding the HR, with the increase of HR, the volume average concentration of the foam cell decreases. However, there is no substantial difference between the cases of different HRs. Moreover, foam cell concentration significantly increases in the hypertension case. This result implies that a slight increase in the blood pressure may induce irreparable problems in the circulatory system.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1723 - 1740"},"PeriodicalIF":3.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of the endothelial surface layer on cell–cell interactions in microvessel bifurcations","authors":"Carlson Triebold, Jared Barber","doi":"10.1007/s10237-024-01863-1","DOIUrl":"10.1007/s10237-024-01863-1","url":null,"abstract":"<div><p>Red blood cells (RBCs) carry oxygen and make up 40–45% of blood by volume in large vessels down to 10% or less in smaller capillaries. Because of their finite size and large volume fraction, they are heterogeneously distributed throughout the body. This is partially because RBCs are distributed or partitioned nonuniformly at diverging vessel bifurcations where blood flows from one vessel into two. Despite its increased recognition as an important player in the microvasculature, few studies have explored how the endothelial surface layer (ESL; a vessel wall coating) may affect partitioning and RBC dynamics at diverging vessel bifurcations. Here, we use a mathematical and computational model to consider how altering ESL properties, as can occur in pathological scenarios, change RBC partitioning, deformation, and penetration of the ESL. The two-dimensional finite element model considers pairs of cells, represented by interconnected viscoelastic elements, passing through an ESL-lined diverging vessel bifurcation. The properties of the ESL include the hydraulic resistivity and an osmotic pressure difference modeling how easily fluid flows through the ESL and how easily the ESL is structurally compressed, respectively. We find that cell–cell interaction leads to more uniform partitioning and greatly enhances the effects of ESL properties, especially for deformation and penetration. This includes the trend that increased hydraulic resistivity leads to more uniform partitioning, increased deformation, and decreased penetration. It also includes the trend that decreased osmotic pressure increases penetration.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1695 - 1721"},"PeriodicalIF":3.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaiyue Zhang, Pan Song, Yan Pei, Xinhui Liu, Min Dai, Jun Wen
{"title":"Numerical investigation on the impact of different coronary aneurysms morphologies on thrombus formation and hemodynamics: a comparative study","authors":"Kaiyue Zhang, Pan Song, Yan Pei, Xinhui Liu, Min Dai, Jun Wen","doi":"10.1007/s10237-024-01859-x","DOIUrl":"10.1007/s10237-024-01859-x","url":null,"abstract":"<div><p>Coronary artery aneurysms (CAAs) are morphologically classified as saccular and fusiform. There is still a great deal of clinical controversy as to which types of CAA are more likely to cause thrombosis. Therefore, the main objective of this study was to evaluate the trend of thrombus growth in CAAs with different morphologies and to assess the risk of possible long-term complications based on hemodynamic parameters. Utilizing computed tomography angiography (CTA) data from eight healthy coronary arteries, two distinct morphologies of coronary artery aneurysms (CAAs) were reconstructed. Distribution of four wall shear stress (WSS)-based indicators and three helicity indicators was analyzed in this study. Meanwhile, a thrombus growth model was introduced to analyze the thrombus formation in CAAs with different morphologies. The research results showed the distribution of most WSS indicators between saccular and fusiform CAAs was not statistically significant. However, due to the presence of a more pronounced helical flow pattern, irregular helical flow structure and longer time of flow stagnation in saccular CAAs during the cardiac cycle, the mean and maximum relative residence time (RRT) were significantly higher in saccular CAAs than in fusiform CAAs (<i>P</i> < 0.05). This may increase the risk of saccular coronary arteries leading to aneurysmal dilatation or even rupture. Although the two CAAs had similar rates of thrombosis, fusiform CAAs may more early cause obstruction of the main coronary flow channel where the aneurysm is located due to thrombosis growth. Thus, the risk of thrombosis in fusiform coronary aneurysms may warrant greater clinical concern.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1631 - 1647"},"PeriodicalIF":3.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Wu, Ke-Jia Zhang, Wen-Jing Xiang, Guan-Ting Du
{"title":"Turbulent flow field in maglev centrifugal blood pumps of CH-VAD and HeartMate III: secondary flow and its effects on pump performance","authors":"Peng Wu, Ke-Jia Zhang, Wen-Jing Xiang, Guan-Ting Du","doi":"10.1007/s10237-024-01855-1","DOIUrl":"10.1007/s10237-024-01855-1","url":null,"abstract":"<div><p>Secondary flow path is one of the crucial aspects during the design of centrifugal blood pumps. Small clearance size increases stress level and blood damage, while large clearance size can improve blood washout and reduce stress level. Nonetheless, large clearance also leads to strong secondary flows, causing further blood damage. Maglev blood pumps rely on magnetic force to achieve rotor suspension and allow more design freedom of clearance size. This study aims to characterize turbulent flow field and secondary flow as well as its effects on the primary flow and pump performance, in two representative commercial maglev blood pumps of CH-VAD and HeartMate III, which feature distinct designs of secondary flow path. The narrow and long secondary flow path of CH-VAD resulted in low secondary flow rates and low disturbance to the primary flow. The flow loss and blood damage potential of the CH-VAD mainly occurred at the secondary flow path, as well as the blade clearances. By contrast, the wide clearances in HeartMate III induced significant disturbance to the primary flow, resulting in large incidence angle, strong secondary flows and high flow loss. At higher flow rates, the incidence angle was even larger, causing larger separation, leading to a significant decrease of efficiency and steeper performance curve compared with CH-VAD. This study shows that maglev bearings do not guarantee good blood compatibility, and more attention should be paid to the influence of secondary flows on pump performance when designing centrifugal blood pumps.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1571 - 1589"},"PeriodicalIF":3.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of multi-component finite element model to predict biomechanical behaviour of breasts during running and quantification of the stiffness impact of internal structure","authors":"Jiazhen Chen, Yue Sun, Qilong Liu, Joanne Yip, Kit-lun Yick","doi":"10.1007/s10237-024-01862-2","DOIUrl":"10.1007/s10237-024-01862-2","url":null,"abstract":"<div><p>This study aims to investigate the biomechanical behaviour and the stiffness impact of the breast internal components during running. To achieve this, a novel nonlinear multi-component dynamic finite element method (FEM) has been established, which uses experimental data obtained via 4D scanning technology and a motion capture system. The data are used to construct a geometric model that comprises the rigid body, layers of soft tissues, skin, pectoralis major muscle, fat, ligaments and glandular tissues. The traditional point-to-point method has a relative mean absolute error of less than 7.92% while the latest surface-to-surface method has an average Euclidean distance (<i>d</i>) of 7.05 mm, validating the simulated results. After simulating the motion of the different components of the breasts, the displacement analysis confirms that when the motion reaches the moment of largest displacement, the displacement of the breast components is proportional to their distance from the chest wall. A biomechanical analysis indicates that the stress sustained by the breast components in ascending order is the glandular tissues, pectoralis major muscle, adipose tissues, and ligaments. The ligaments provide the primary support during motion, followed by the pectoralis major muscle. In addition, specific stress points of the breast components are identified. The stiffness impact experiment indicates that compared with ligaments, the change of glandular tissue stiffness had a slightly more obvious effect on the breast surface. The findings serve as a valuable reference for the medical field and sports bra industry to enhance breast protection during motion.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1679 - 1694"},"PeriodicalIF":3.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01862-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}