Willi Koller, Martin Svehlik, Elias Wallnöfer, Andreas Kranzl, Gabriel Mindler, Arnold Baca, Hans Kainz
{"title":"Femoral bone growth predictions based on personalized multi-scale simulations: validation and sensitivity analysis of a mechanobiological model.","authors":"Willi Koller, Martin Svehlik, Elias Wallnöfer, Andreas Kranzl, Gabriel Mindler, Arnold Baca, Hans Kainz","doi":"10.1007/s10237-025-01942-x","DOIUrl":null,"url":null,"abstract":"<p><p>Musculoskeletal function is pivotal to long-term health. However, various patient groups develop torsional deformities, leading to clinical, functional problems. Understanding the interplay between movement pattern, bone loading and growth is crucial for improving the functional mobility of these patients and preserving long-term health. Multi-scale simulations in combination with a mechanobiological bone growth model have been used to estimate bone loads and predict femoral growth trends based on cross-sectional data. The lack of longitudinal data in the previous studies hindered refinements of the mechanobiological model and validation of subject-specific growth predictions, thereby limiting clinical applications. This study aimed to validate the growth predictions using magnetic resonance images and motion capture data-collected longitudinally-from ten growing children. Additionally, a sensitivity analysis was conducted to refine model parameters. A linear regression model based on physical activity information, anthropometric data and predictions from the refined mechanobiological model explained 70% of femoral anteversion development. Notably, the direction of femoral development was accurately predicted in 18 out of 20 femurs, suggesting that growth predictions could help to revolutionize treatment strategies for torsional deformities.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01942-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Musculoskeletal function is pivotal to long-term health. However, various patient groups develop torsional deformities, leading to clinical, functional problems. Understanding the interplay between movement pattern, bone loading and growth is crucial for improving the functional mobility of these patients and preserving long-term health. Multi-scale simulations in combination with a mechanobiological bone growth model have been used to estimate bone loads and predict femoral growth trends based on cross-sectional data. The lack of longitudinal data in the previous studies hindered refinements of the mechanobiological model and validation of subject-specific growth predictions, thereby limiting clinical applications. This study aimed to validate the growth predictions using magnetic resonance images and motion capture data-collected longitudinally-from ten growing children. Additionally, a sensitivity analysis was conducted to refine model parameters. A linear regression model based on physical activity information, anthropometric data and predictions from the refined mechanobiological model explained 70% of femoral anteversion development. Notably, the direction of femoral development was accurately predicted in 18 out of 20 femurs, suggesting that growth predictions could help to revolutionize treatment strategies for torsional deformities.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.