Rocío Ruiz-Lozano, José Luis Calvo-Gallego, Peter Pivonka, Javier Martínez-Reina
{"title":"Optimisation of romosozumab plus denosumab sequential treatments against postmenopausal osteoporosis. Insights from in silico simulations","authors":"Rocío Ruiz-Lozano, José Luis Calvo-Gallego, Peter Pivonka, Javier Martínez-Reina","doi":"10.1007/s10237-024-01900-z","DOIUrl":"10.1007/s10237-024-01900-z","url":null,"abstract":"<div><p>Drug treatments against osteoporosis are commonly divided into anti-catabolic and anabolic. Anti-catabolic drugs reduce bone turnover and increase bone mass mainly through mineralization of the existing bone matrix. Anabolic drugs, on the other hand, enhance osteoblastic activity, resulting in new bone formation. Treatments are often limited to a few years due to reported side effects, which increases fracture risk upon discontinuation. Switching to a different drug is a common strategy. However, it is not clear what is the best combination of a dual-drug therapy, the lapse between treatments and other parameters defining the combination. In this study, we conducted in silico trials to assess the efficacy of two drugs: denosumab (anti-catabolic) and romosozumab (anabolic and anti-catabolic). Our simulations indicate that starting treatment with romosozumab leads to greater bone mass gain. This is because anti-catabolic treatments reduce bone rate and, due to osteoblast-osteoclast coupling, the number of osteoblast precursors. Romosozumab increases the proliferation of these precursors, so their population should be maximised for optimal efficacy. Therefore, prior administration of an anti-catabolic drug may be counterproductive to the effectiveness of romosozumab. We also found that a rest period between treatments does not benefit bone mass gain. Furthermore, concurrent administration of romosozumab and denosumab results in greater bone mass gain and might be worth investigating in future clinical trials. Finally, we showed that reduction of fracture risk in patients undergoing sequential treatments is dose dependent and consequently, dosage could be optimised in a patient-specific manner.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"383 - 404"},"PeriodicalIF":3.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhibo Du, Jiarui Zhang, Xinghao Wang, Zhuo Zhuang, Zhanli Liu
{"title":"Bridging biomechanics with neuropathological and neuroimaging insights for mTBI understanding through multiscale and multiphysics computational modeling","authors":"Zhibo Du, Jiarui Zhang, Xinghao Wang, Zhuo Zhuang, Zhanli Liu","doi":"10.1007/s10237-024-01924-5","DOIUrl":"10.1007/s10237-024-01924-5","url":null,"abstract":"<div><p>Mild traumatic brain injury (mTBI) represents a significant public health challenge in modern society. An in-depth analysis of the injury mechanisms, pathological forms, and assessment criteria of mTBI has underscored the pivotal role of craniocerebral models in comprehending and addressing mTBI. Research indicates that although existing finite element craniocerebral models have made strides in simulating the macroscopic biomechanical responses of the brain, they still fall short in accurately depicting the complexity of mTBI. Consequently, this paper emphasizes the necessity of integrating biomechanics, neuropathology, and neuroimaging to develop multiscale and multiphysics craniocerebral models, which are crucial for precisely capturing microscopic injuries, establishing pathological mechanical indicators, and simulating secondary and long-term brain functional impairments. The comprehensive analysis and in-depth discussion presented in this paper offer new perspectives and approaches for understanding, diagnosing, and preventing mTBI, potentially contributing to alleviating the global burden of mTBI.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"361 - 381"},"PeriodicalIF":3.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The relationship between regional mechanical properties and hemodynamic indices of the aortic arch: a preliminary study","authors":"Yawei Zhao, Yifan Cao, Fen Li, Chenjia Zhang, Yike Shi, Hui Song, Lingfeng Chen, Weiyi Chen","doi":"10.1007/s10237-025-01927-w","DOIUrl":"10.1007/s10237-025-01927-w","url":null,"abstract":"<div><p>This study aimed to investigate the relationship between regional elastic modulus and corresponding hemodynamic indices of healthy aortic arch. Porcine aortic arches (<i>n</i>=18) were obtained from a local abattoir and divided into 24 regions along axial and circumferential directions. Regional elastic modulus was measured by indentation tests, and elastic fiber content was assessed using Elastica van Gieson (EVG) staining. Additionally, a porcine aortic model was reconstructed based on computed tomography angiography (CTA) images, and local hemodynamic indices were calculated by the two-way fluid–structure interaction (FSI) method. The elastic modulus and elastic fiber content were inclined to be lower on the outer curvature of the aortic arch, particularly showing significant differences at the distal end. A negative correlation was found between elastic modulus and time-averaged wall shear stress (TAWSS)<span>((r_{s}=-0.762, textit{p}=0.028)</span>) at the proximal end of the porcine aortic arch. There was a significant positive correlation between elastic modulus and oscillatory shear index (OSI)<span>((r_{s}=0.714, textit{p}=0.047))</span> at the middle of the aortic arch. The regional elastic modulus of healthy porcine aortic arch is associated with local TAWSS and OSI. The hemodynamic environment could be a contributing factor influencing the distribution of the mechanical properties on the arch.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"579 - 588"},"PeriodicalIF":3.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transient flow-induced deformation of cancer cells in microchannels: a general computational model and experiments","authors":"R. Lu, J. Li, Z. Guo, Z. Wang, J. J. Feng, Y. Sui","doi":"10.1007/s10237-024-01920-9","DOIUrl":"10.1007/s10237-024-01920-9","url":null,"abstract":"<div><p>Recently, the present authors proposed a three-dimensional computational model for the transit of suspended cancer cells through a microchannel (Wang et al. in Biomech Model Mechanobiol 22: 1129-1143, 2023). The cell model takes into account the three major subcellular components: A viscoelastic membrane that represents the lipid bilayer supported by the underlying cell cortex, a viscous cytoplasm, and a nucleus modelled as a smaller microcapsule. The cell deformation and its interaction with the surrounding fluid were solved by an immersed boundary-lattice Boltzmann method. The computational model accurately recovered the transient flow-induced deformation of the human leukaemia HL-60 cells in a constricted channel. However, as a general modelling framework, its applicability to other cell types in different flow geometries remains unknown, due to the lack of quantitative experimental data. In this study, we conduct experiments of the transit of human prostate cancer (PC-3) and leukaemia (K-562) cells, which represent solid and liquid tumour cell lines, respectively, through two distinct microchannel geometries, each dominated by shear and extension flow. We find that the two cell lines have qualitatively similar flow-induced dynamics. Comparisons between experiments and numerical simulations suggest that our model can accurately predict the transient cell deformation in both geometries, and that it can serve as a general modelling framework for the dynamics of suspended cancer cells in microchannels.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"489 - 506"},"PeriodicalIF":3.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01920-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Sogbadji, Karim Kadry, Gianluca Poletti, Francesca Berti, Elazer R. Edelman, Farhad R. Nezami
{"title":"Impact of lesion preparation-induced calcified plaque defects in vascular intervention for atherosclerotic disease: in silico assessment","authors":"Jonas Sogbadji, Karim Kadry, Gianluca Poletti, Francesca Berti, Elazer R. Edelman, Farhad R. Nezami","doi":"10.1007/s10237-024-01923-6","DOIUrl":"10.1007/s10237-024-01923-6","url":null,"abstract":"<div><p> Percutaneous coronary interventions in highly calcified atherosclerotic lesions are challenging due to the high mechanical stiffness that significantly restricts stent expansion. Intravascular lithotripsy (IVL) is a novel vessel preparation technique with the potential to improve interventional outcomes by inducing microscopic and macroscopic cracks to enhance stent expansion. However, the exact mechanism of action for IVL is poorly understood, and it remains unclear whether the improvement in-stent expansion is caused by either the macro-cracks allowing the vessel to open or the micro-cracks altering the bulk material properties. In silico models offer a robust means to examine (a) diverse lesion morphologies, (b) a range of lesion modifications to address these deficiencies, and (c) the correlation between calcium morphology alteration and improved stenting outcomes. These models also help identify which lesions would benefit the most from IVL. In this study, we develop an in silico model of stent expansion to study the effect of macro-crack morphology on interventional outcomes in clinically inspired geometries. Larger IVL-induced defects promote more post-stent lumen gain. IVL seems to induce better stenting outcomes for large calcified lesions. IVL defects that split calcified plaque in two parts are the most beneficial for stenting angioplasty, regardless of the calcified plaque size. Location of the IVL defect does not seem to matter with respect to lumen gain. These findings underscore the potential of IVL to enhance lesion compliance and improve clinical outcomes in PCI. The macroscopic defects induced by IVL seem to have a substantial impact on post-stent outcomes.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"539 - 552"},"PeriodicalIF":3.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01923-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louis Parker, Emilie Bollache, Shannon Soulez, Khaoula Bouazizi, Nicolas Badenco, Daniel Giese, Estelle Gandjbakhch, Alban Redheuil, Mikael Laredo, Nadjia Kachenoura
{"title":"A multi-modal computational fluid dynamics model of left atrial fibrillation haemodynamics validated with 4D flow MRI","authors":"Louis Parker, Emilie Bollache, Shannon Soulez, Khaoula Bouazizi, Nicolas Badenco, Daniel Giese, Estelle Gandjbakhch, Alban Redheuil, Mikael Laredo, Nadjia Kachenoura","doi":"10.1007/s10237-024-01901-y","DOIUrl":"10.1007/s10237-024-01901-y","url":null,"abstract":"<div><p>Atrial fibrillation (AF) is characterized by rapid and irregular contraction of the left atrium (LA). Impacting LA haemodynamics, this increases the risk of thrombi development and stroke. Flow conditions preceding stroke in these patients are not well defined, partly due the limited resolution of 4D flow magnetic resonance imaging (MRI). In this study, we combine a high-resolution computed tomography (CT) LA reconstruction with motion and pulmonary inflows from 4D flow MRI to create a novel multimodal computational fluid dynamics (CFD) model, applying it to five AF patients imaged in sinus rhythm (24 ± 39 days between acquisitions). The dynamic model was compared with a rigid wall equivalent and the main flow structures were validated with 4D flow MRI. Point-by-point absolute differences between the velocity fields showed moderate differences given the sensitivity to registration. The rigid wall model significantly underestimated LA time-averaged wall shear stress (TAWSS) (<i>p</i> = 0.02) and oscillatory shear index (OSI) (<i>p</i> = 0.02) compared to the morphing model. Similarly, in the left atrial appendage (LAA), TAWSS (<i>p</i> = 0.003) and OSI (<i>p</i> < 0.001) were further underestimated. The morphing model yielded a more accurate mitral valve waveform and showed low TAWSS and high OSI in the LAA, both associated with thrombus formation. We also observed a positive correlation between indexed LA volume and endothelial cell activation potential (ECAP) (R<sup>2</sup> = 0.83), as well as LAA volume and LAA OSI (R<sup>2</sup> = 0.70). This work demonstrates the importance of LA motion in modelling LAA flow. Assessed in larger cohorts, LAA haemodynamic analysis may be beneficial to refine stroke risk assessment for AF.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 1","pages":"139 - 152"},"PeriodicalIF":3.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asif Istiak, Saiful Islam, Malek Adouni, Tanvir R. Faisal
{"title":"Hyperelastic constitutive modeling of healthy and enzymatically mediated degraded articular cartilage","authors":"Asif Istiak, Saiful Islam, Malek Adouni, Tanvir R. Faisal","doi":"10.1007/s10237-024-01919-2","DOIUrl":"10.1007/s10237-024-01919-2","url":null,"abstract":"<div><p>This research demonstrates a systematic curve fitting approach for acquiring parametric values of hyperelastic constitutive models for both healthy and enzymatically mediated degenerated cartilage to facilitate finite element modeling of cartilage. Several widely used phenomenological hyperelastic constitutive models were tested to adequately capture the changes in cartilage mechanics that vary with the differential/unequal abundance of matrix metalloproteinases (MMPs). Trauma and physiological conditions result in an increased production of collagenases (MMP-1) and gelatinases (MMP-9), which impacts the load-bearing ability of cartilage by significantly deteriorating its extracellular matrix (ECM). The material parameters in the constitutive equation of each hyperelastic model are significant for developing a comprehensive computational interpretation of MMP mediated degenerated cartilage. Stress–strain responses obtained from indentation test were fitted with selected Ogden, polynomial, reduced polynomial, and van der Waals hyperelastic constitutive models by optimizing their adjustable parameters (material constants). The goodness of fit of the 2<sup>nd</sup> order reduced polynomial and van der Waals model exhibited the closest data fitting with the experimental stress–strain distributions of healthy and degraded articular cartilage. The coefficient of the shear modulus for the 2<sup>nd</sup> order reduced polynomial decreased gradually by 21.9% to 80.1% with more enzymatic degradation of collagen fibril due to the relative abundance of MMP-1 (collagenases), and 28.5% to 69.2% for the van der Waals model. Our findings showed that the major materials coefficients of the models were reduced in the degenerated cartilages, and the reduction varied differentially with the relative abundance of MMPs-1 and 9, correlating the severity of degeneration. This work advances the understanding of cartilage mechanics and offers insights into the impact of biochemical (enzymatic) effects on cartilage degradation.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"471 - 487"},"PeriodicalIF":3.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob N. Hirst, Brian R. Phung, Bjorn T. Johnsson, Junyan He, Brittany Coats, Ashley D. Spear
{"title":"Predicting fall parameters from infant skull fractures using machine learning","authors":"Jacob N. Hirst, Brian R. Phung, Bjorn T. Johnsson, Junyan He, Brittany Coats, Ashley D. Spear","doi":"10.1007/s10237-024-01922-7","DOIUrl":"10.1007/s10237-024-01922-7","url":null,"abstract":"<div><p>When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma. We utilize a state-of-the-art finite element fracture simulation framework to generate a unique dataset of skull fracture patterns from simulated falls. We then extract features from the resulting fracture patterns in this dataset to be used as input into machine learning models. We compare seven machine learning models on their abilities to predict two fall parameters: impact site and fall height. The results from our best-performing models demonstrate that while predicting the exact fall height remains challenging (<span>(R^2)</span> 0.27 for the ridge regression model), we can effectively identify potential impact sites (<span>(R^2)</span> between 0.65 and 0.76 for the random forest regression model). This work not only provides a tool to enhance the ability to assess abuse in cases of pediatric head trauma, but also advocates for advancements in computational models to simulate complex skull fractures.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"521 - 537"},"PeriodicalIF":3.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Gaussian modulus of lipid membranes","authors":"Ashutosh Agrawal","doi":"10.1007/s10237-025-01925-y","DOIUrl":"10.1007/s10237-025-01925-y","url":null,"abstract":"<div><p>The Gaussian modulus is a crucial property that influences topological transformations in lipid membranes. However, unlike the bending modulus, estimating the Gaussian modulus has been particularly challenging due to the constraints imposed by the Gauss-Bonnet theorem. Despite this, various theoretical, computational, and experimental approaches have been developed to estimate the Gaussian modulus, though they are often complex, and analytical estimates remain rare. In this work, we present a minimalist model inspired by the folding of a sheet of paper, which provides an exact calculation of the Gaussian modulus. Remarkably, the induced deformation does not affect the Gaussian curvature or alter the system’s topology, yet it yields the modulus that governs these geometric properties.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"553 - 557"},"PeriodicalIF":3.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicoletta Braidotti, Davide Rizzo, Catalin D. Ciubotaru, Giuseppina Sacco, Annalisa Bernareggi, Dan Cojoc
{"title":"Actin instability alters red blood cell mechanics and Piezo1 channel activity","authors":"Nicoletta Braidotti, Davide Rizzo, Catalin D. Ciubotaru, Giuseppina Sacco, Annalisa Bernareggi, Dan Cojoc","doi":"10.1007/s10237-024-01921-8","DOIUrl":"10.1007/s10237-024-01921-8","url":null,"abstract":"<div><p>The organization and dynamics of the spectrin–actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume. In this study, we investigated how actin instability affects Piezo1 channel gating, in relation to RBC deformation and mechanical properties, using micropipette aspiration and optical tweezers. Actin instability, induced by 0.5 μM Cytochalasin-D (Cyt-D), led to a 22% reduction in the activation pressure. Additionally, we observed a decreasing trend in Young’s modulus, membrane tension, and viscosity. By measuring the time required for cell shape recovery after deformation in an optical trap, we found that Cyt-D-treated RBC took approximately 14% longer to recover compared to untreated cells. The bimodal imaging feature of our experimental approach allowed us to simultaneously measure and correlate activation pressure with mechanical properties at the single-cell level. A significant correlation was found between these parameters in both treated and untreated RBC. Our findings demonstrate the influence of actin instability on both Piezo1 activation and RBC mechanics. These results offer new insights into the interplay between F-actin and Piezo1 in RBC mechanobiology.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"507 - 520"},"PeriodicalIF":3.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}