单纤维张力稳态下的微结构重塑重建了动脉独特的体外力学行为。

IF 3 3区 医学 Q2 BIOPHYSICS
Ruturaj M. Badal, Ryan R. Mahutga, Patrick W. Alford, Victor H. Barocas
{"title":"单纤维张力稳态下的微结构重塑重建了动脉独特的体外力学行为。","authors":"Ruturaj M. Badal,&nbsp;Ryan R. Mahutga,&nbsp;Patrick W. Alford,&nbsp;Victor H. Barocas","doi":"10.1007/s10237-025-01934-x","DOIUrl":null,"url":null,"abstract":"<div><p>The arterial wall is a structurally complex material, exhibiting both nonlinearity and anisotropy in its mechanics, with the compelling consequence that the end plate force in a pressure-stretch experiment can increase or decrease with pressure depending on the axial stretch of the vessel. Furthermore, it has long been observed that the axial stretch at which the ex vivo pressure-force curve is flat is close to the in vivo axial stretch, but the mechanism driving this phenomenon has remained unclear. By employing and modifying a custom plugin that represents tissue components as networks, we computationally tested the hypothesis that tensional homeostasis at the microscopic scale could lead to the macroscopic pressure-invariant axial force effect observed at in vivo axial stretch. Our findings suggest that remodeling events for individual fibers to achieve a target stress can, acting in aggregate, cause the vessel to exhibit a pressure-invariant axial force in the pressure-force experiment without any explicit sensing of the pressure-force behavior during remodeling. Computational isolation of tissue components suggested that remodeling of collagen fibers is a primary driver of this result. Further as long seen experimentally, the pressure-force curve plateau occurred at stretches close to the in vivo remodeling stretch. </p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 2","pages":"701 - 712"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural remodeling under single fiber tensional homeostasis recreates distinctive ex vivo mechanical behavior of arteries\",\"authors\":\"Ruturaj M. Badal,&nbsp;Ryan R. Mahutga,&nbsp;Patrick W. Alford,&nbsp;Victor H. Barocas\",\"doi\":\"10.1007/s10237-025-01934-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The arterial wall is a structurally complex material, exhibiting both nonlinearity and anisotropy in its mechanics, with the compelling consequence that the end plate force in a pressure-stretch experiment can increase or decrease with pressure depending on the axial stretch of the vessel. Furthermore, it has long been observed that the axial stretch at which the ex vivo pressure-force curve is flat is close to the in vivo axial stretch, but the mechanism driving this phenomenon has remained unclear. By employing and modifying a custom plugin that represents tissue components as networks, we computationally tested the hypothesis that tensional homeostasis at the microscopic scale could lead to the macroscopic pressure-invariant axial force effect observed at in vivo axial stretch. Our findings suggest that remodeling events for individual fibers to achieve a target stress can, acting in aggregate, cause the vessel to exhibit a pressure-invariant axial force in the pressure-force experiment without any explicit sensing of the pressure-force behavior during remodeling. Computational isolation of tissue components suggested that remodeling of collagen fibers is a primary driver of this result. Further as long seen experimentally, the pressure-force curve plateau occurred at stretches close to the in vivo remodeling stretch. </p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"24 2\",\"pages\":\"701 - 712\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-025-01934-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-025-01934-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

动脉壁是一种结构复杂的材料,在力学上表现出非线性和各向异性,在压力拉伸实验中,端板力可以随着压力的增加或减少,这取决于血管的轴向拉伸。此外,人们早就观察到,离体压力-力曲线平坦的轴向拉伸与体内轴向拉伸接近,但驱动这一现象的机制尚不清楚。通过使用和修改一个将组织组件表示为网络的自定义插件,我们计算验证了微观尺度上的张力稳态可能导致体内轴向拉伸时观察到的宏观压力不变轴向力效应的假设。我们的研究结果表明,单个纤维达到目标应力的重塑事件可以聚集在一起,导致血管在压力-力实验中表现出压力不变的轴向力,而在重塑过程中没有任何明确的压力-力行为感知。组织成分的计算分离表明,胶原纤维的重塑是这一结果的主要驱动因素。此外,正如长期以来在实验中看到的那样,压力-力曲线平台发生在接近体内重塑拉伸的拉伸处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural remodeling under single fiber tensional homeostasis recreates distinctive ex vivo mechanical behavior of arteries

The arterial wall is a structurally complex material, exhibiting both nonlinearity and anisotropy in its mechanics, with the compelling consequence that the end plate force in a pressure-stretch experiment can increase or decrease with pressure depending on the axial stretch of the vessel. Furthermore, it has long been observed that the axial stretch at which the ex vivo pressure-force curve is flat is close to the in vivo axial stretch, but the mechanism driving this phenomenon has remained unclear. By employing and modifying a custom plugin that represents tissue components as networks, we computationally tested the hypothesis that tensional homeostasis at the microscopic scale could lead to the macroscopic pressure-invariant axial force effect observed at in vivo axial stretch. Our findings suggest that remodeling events for individual fibers to achieve a target stress can, acting in aggregate, cause the vessel to exhibit a pressure-invariant axial force in the pressure-force experiment without any explicit sensing of the pressure-force behavior during remodeling. Computational isolation of tissue components suggested that remodeling of collagen fibers is a primary driver of this result. Further as long seen experimentally, the pressure-force curve plateau occurred at stretches close to the in vivo remodeling stretch.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信