{"title":"A review on finite element modelling of finger and hand mechanical behaviour in haptic interactions.","authors":"Gianmarco Cei, Alessio Artoni, Matteo Bianchi","doi":"10.1007/s10237-025-01943-w","DOIUrl":null,"url":null,"abstract":"<p><p>Touch perception largely depends on the mechanical properties of the soft tissues of the glabrous skin of fingers and hands. The correct modelling of the stress-strain state of these tissues during the interaction with external objects can provide insights on the exteroceptual mechanisms of human touch, offering design guidelines for artificial haptic systems. However, devising correct models of the finger and hand at contact is a challenging task, due to the biomechanical complexity of human skin. This work presents an overview of the use of Finite Element analysis for studying the stress-strain state in the glabrous skin of the hand, under different loading conditions. We summarize existing approaches for the design and validation of Finite Element models of the soft tissues of the human finger and hand, evaluating their capability to provide results that are valuable in understanding tactile perception. The goal of our work is to serve as a reference and provide guidelines for those approaching this modelling method for the study of human haptic perception.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01943-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Touch perception largely depends on the mechanical properties of the soft tissues of the glabrous skin of fingers and hands. The correct modelling of the stress-strain state of these tissues during the interaction with external objects can provide insights on the exteroceptual mechanisms of human touch, offering design guidelines for artificial haptic systems. However, devising correct models of the finger and hand at contact is a challenging task, due to the biomechanical complexity of human skin. This work presents an overview of the use of Finite Element analysis for studying the stress-strain state in the glabrous skin of the hand, under different loading conditions. We summarize existing approaches for the design and validation of Finite Element models of the soft tissues of the human finger and hand, evaluating their capability to provide results that are valuable in understanding tactile perception. The goal of our work is to serve as a reference and provide guidelines for those approaching this modelling method for the study of human haptic perception.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.