A review on finite element modelling of finger and hand mechanical behaviour in haptic interactions.

IF 3 3区 医学 Q2 BIOPHYSICS
Gianmarco Cei, Alessio Artoni, Matteo Bianchi
{"title":"A review on finite element modelling of finger and hand mechanical behaviour in haptic interactions.","authors":"Gianmarco Cei, Alessio Artoni, Matteo Bianchi","doi":"10.1007/s10237-025-01943-w","DOIUrl":null,"url":null,"abstract":"<p><p>Touch perception largely depends on the mechanical properties of the soft tissues of the glabrous skin of fingers and hands. The correct modelling of the stress-strain state of these tissues during the interaction with external objects can provide insights on the exteroceptual mechanisms of human touch, offering design guidelines for artificial haptic systems. However, devising correct models of the finger and hand at contact is a challenging task, due to the biomechanical complexity of human skin. This work presents an overview of the use of Finite Element analysis for studying the stress-strain state in the glabrous skin of the hand, under different loading conditions. We summarize existing approaches for the design and validation of Finite Element models of the soft tissues of the human finger and hand, evaluating their capability to provide results that are valuable in understanding tactile perception. The goal of our work is to serve as a reference and provide guidelines for those approaching this modelling method for the study of human haptic perception.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01943-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Touch perception largely depends on the mechanical properties of the soft tissues of the glabrous skin of fingers and hands. The correct modelling of the stress-strain state of these tissues during the interaction with external objects can provide insights on the exteroceptual mechanisms of human touch, offering design guidelines for artificial haptic systems. However, devising correct models of the finger and hand at contact is a challenging task, due to the biomechanical complexity of human skin. This work presents an overview of the use of Finite Element analysis for studying the stress-strain state in the glabrous skin of the hand, under different loading conditions. We summarize existing approaches for the design and validation of Finite Element models of the soft tissues of the human finger and hand, evaluating their capability to provide results that are valuable in understanding tactile perception. The goal of our work is to serve as a reference and provide guidelines for those approaching this modelling method for the study of human haptic perception.

触觉交互中手指和手力学行为的有限元建模研究进展。
触觉感知很大程度上取决于手指和手的无毛皮肤软组织的机械特性。这些组织在与外界物体相互作用过程中的应力应变状态的正确建模可以为人类触觉的外感觉机制提供见解,为人工触觉系统的设计提供指导。然而,由于人体皮肤的生物力学复杂性,设计手指和手接触的正确模型是一项具有挑战性的任务。这项工作概述了使用有限元分析来研究手无毛皮肤在不同载荷条件下的应力-应变状态。我们总结了现有的设计和验证人类手指和手的软组织有限元模型的方法,评估了它们的能力,为理解触觉感知提供了有价值的结果。我们的工作目的是为那些接近人类触觉感知建模方法的研究提供参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信