TalantaPub Date : 2025-02-01Epub Date: 2024-11-08DOI: 10.1016/j.talanta.2024.127170
Jean Claude Munyemana, Xiuxia Sun, Lu Li, Chunxia Zhang, Eskandar Qaed, Jianxi Xiao
{"title":"Strategic enhancement of collagen detection using lanthanide-functionalized collagen targeted peptides.","authors":"Jean Claude Munyemana, Xiuxia Sun, Lu Li, Chunxia Zhang, Eskandar Qaed, Jianxi Xiao","doi":"10.1016/j.talanta.2024.127170","DOIUrl":"10.1016/j.talanta.2024.127170","url":null,"abstract":"<p><p>Monitoring collagen denaturation is crucial for diagnosing collagen-related diseases such as tumors and fibrosis. Herein, we have developed specific probes to detect denatured collagen (d-Col) and collagen I (Col I), utilizing peptide probes with sequences (GOP)<sub>10</sub> and HVWMQAP, targeting at d-Col and Col I, respectively. These peptides were conjugated with 1,10-phenanthroline-5-carboxylic Acid (Phen), forming Phen-Ahx-(GOP)<sub>10</sub> and Phen-Ahx-HVWMQAP. Phen acts as both an antenna sensitizer and a chelator, coordinating with Terbium (III) and Europium (III) ions via its nitrogen atom, facilitating fluorescent emission in green and red, respectively. The investigation demonstrated that Tb<sup>3+</sup> interacts with three (GOP)<sub>10</sub> peptide units through Phen, while Eu<sup>3+</sup> connects with four units of Ahx-HVWMQAP peptides. Additionally, it is important to note that the structure of the peptides remains unchanged after chelating with the lanthanide ions, maintaining their integrity throughout the process. These probes have effectively demonstrated their ability to bind to specific collagen types with selectivity, enabling accurate identification of their presence. The excellent binding of these probes is due to the branched structure of the formed lanthanide-peptide complexes. A dose-dependent linear association was observed in the binding of Eu-[Phen-Ahx-HVWMQAP]<sub>4</sub> to Col I, with concentration levels ranging from 0.5 to 100 μM and a minimal detectable concentration of 0.113 μM. We anticipate that our developed probes will improve understanding of collagen remodeling and provide opportunities for the diagnosis of collagen-associated diseases.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127170"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an innovative reusable terahertz biosensor platform integrated graphene and all-silicon groove for detecting cancer cells in aqueous environments.","authors":"Haiyun Yao, Lanju Liang, Zhaoqing Sun, Ziqun Wang, Xiaofei Hu, Zhenhua Li, Xin Yan, Maosheng Yang, Jianquan Yao","doi":"10.1016/j.talanta.2024.127214","DOIUrl":"10.1016/j.talanta.2024.127214","url":null,"abstract":"<p><p>The label-free detection and analysis of cancer cells using portable biosensing devices is crucial and promising. In this study, a novel reusable biosensing platform with a microfluidic-like based on terahertz plasmonic metasurfaces utilizing graphene integrated with an all-silicon groove for detecting liquid live cancer cells was developed. The proposed biosensor platform stands out because it can differentiate between the concentrations of three types of cancer cells by monitoring changes in resonance intensity and phase difference. The minimum concentration for identification was reduced to as low as 5 × 10<sup>4</sup> cells/mL. We effectively constructed two-dimensional optical intensity cards using continuous wavelet transforms, which presented a more accurate approach for the recognition and determination of the three types of cancer cells. Our proposed biosensors show great potential for the determination and recognition of label-free cancer cells in aqueous environments as alternatives to non-immune biosensing technology.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127214"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-02-01Epub Date: 2024-11-08DOI: 10.1016/j.talanta.2024.127142
Linsen Li, Yulong Zeng, Ge Yang, Hao Liu, Chao Zhu, Ying Zhang, Feng Qu, Qiang Ma
{"title":"Aptamer-functionalized magnetic blade spray coupled with a nucleic acid dye-based mass tag strategy for miniature mass spectrometry analysis of endoglin.","authors":"Linsen Li, Yulong Zeng, Ge Yang, Hao Liu, Chao Zhu, Ying Zhang, Feng Qu, Qiang Ma","doi":"10.1016/j.talanta.2024.127142","DOIUrl":"10.1016/j.talanta.2024.127142","url":null,"abstract":"<p><p>Ambient ionization mass spectrometry (AIMS) allows rapid analysis of targets, while its overall selectivity is somewhat limited due to the lack of chromatographic separation. Recently, magnetic blade spray (MBS) has enhanced AIMS by incorporating immunomagnetic beads instead of the traditional coated blade spray (CBS) coating, thereby improving selectivity and sensitivity by targeted analyte detection and reducing background interference. In this study, an aptamer-functionalized and nucleic acid dye (GelRed)-loaded MS probe (AGMP) was developed and employed with MBS-based miniature mass spectrometer. Specifically, AGMP was assembled using aptamer-functionalized magnetic nanoparticles loaded with GelRed as mass tags for highly sensitive analysis of endoglin (CD105). For the preparation of AGMP, the CD105 binding aptamer of End-A2 was first selected through three rounds of capillary electrophoresis (CE)-SELEX with an optimal affinity of 62.3 pM. After optimizing the critical parameters that affected adsorption, desorption, and ionization efficiency, this method displayed satisfactory sensitivity with detection and quantitation limits of 0.2 and 1 ng/mL, respectively, as well as reliable recoveries of 90.1-106.8 % with relative standard deviations of 1.6-5.4 %. Besides, the method effectively mitigated the matrix effects with a slope deviation of 10.03 %, and exhibited good selectivity and environmental friendliness. Furthermore, this AGMP-based MBS strategy was successfully applied for CD105 detection in serum samples, demonstrating its potential for sensitive and on-site biomolecule analysis in complex matrices.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127142"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An innovative fluorescent probe for monitoring of ONOO<sup>-</sup> in multiple liver-injury models.","authors":"Cailing Fan, Kaifu Ma, Weijie Chi, Yongwei LiMeng, Qinxi Dong, Yanan Gao, Chaokun Zeng, Wenshu Meng, Wei Shu, Chaoyuan Zeng","doi":"10.1016/j.talanta.2024.127194","DOIUrl":"10.1016/j.talanta.2024.127194","url":null,"abstract":"<p><p>The liver plays a pivotal role in numerous critical physiological processes, functioning as the body's metabolic and detoxification center. Chronic liver disease can precipitate more severe health complications. The onset and progression of liver disease are often characterized by abnormal concentrations of ONOO<sup>-</sup>, a highly reactive species whose direct capture and detection in physiological environments pose significant challenges. This work presents an innovative fluorescent probe NAP-ONOO derived from 1,8-naphthalimide, specifically engineered to dynamically monitor fluctuations of ONOO<sup>-</sup> levels during liver injury. Due to its high biocompatibility, NAP-ONOO enabled to observe varying degrees of ONOO<sup>-</sup> up-regulation across models of liver inflammatory injury, alcohol-induced damage, and drug-induced hepatotoxicity in cellular systems as well as in zebrafish and mice models. These findings highlight the potential of NAP-ONOO for identifying and detecting the liver injury biomarker ONOO<sup>-</sup>. Furthermore, NAP-ONOO serves as potent tool for the identification of liver injuries, drug screening, and cellular imaging analyses, thereby promising avenues for future research endeavors.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127194"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-02-01Epub Date: 2024-11-07DOI: 10.1016/j.talanta.2024.127185
Vrushti Kansara, Mitali Patel
{"title":"Exploring the role of graphene-metal hybrid nanomaterials as Raman signal enhancers in early stage cancer detection.","authors":"Vrushti Kansara, Mitali Patel","doi":"10.1016/j.talanta.2024.127185","DOIUrl":"10.1016/j.talanta.2024.127185","url":null,"abstract":"<p><p>Molecular diagnosis plays a significant role in detection of biomolecules linked to early stage cancer since it offers greater sensitivity and reliability for identification of biomarker level changes as the disease progresses. The application of vibrational spectroscopy in biomarker detection is defined by the fingerprint spectrum of a molecule originating from single-molecule vibrations. This characteristic makes surface enhanced Raman spectroscopy (SERS) a promising tool for identification of biomarkers. The performance of the SERS technique largely depends on the material being used as the SERS substrate. Graphene, with its large surface area and abundance of aromatic regions, is considered advantageous as SERS substrate. Combining graphene with metal nanomaterials considerably increases SERS signal intensity, thereby enhancing detection sensitivity. Therefore, this review emphasizes the significance of selecting graphene-metal nanohybrids as suitable SERS substrates for signal amplification. The detail understanding of the mechanism of graphene-metal hybrid in SERS based detection of early stage cancer is also presented. Furthermore, several examples demonstrated the application of graphene-metal hybrid nanomaterials in detecting biomarkers and cancer cell differentiation using SERS imaging.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127185"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-02-01Epub Date: 2024-11-10DOI: 10.1016/j.talanta.2024.127197
Dingxi Lu, Haotian Li, Nan Xiao, Mengyi Jiang, Yeerkentai Zuna, Shiqin Feng, Zhanhong Li, Jianjun Long, Jean Louis Marty, Zhigang Zhu
{"title":"Salivary glucose detection based on platinum metal hydrogel prepared mouthguard electrochemical sensor.","authors":"Dingxi Lu, Haotian Li, Nan Xiao, Mengyi Jiang, Yeerkentai Zuna, Shiqin Feng, Zhanhong Li, Jianjun Long, Jean Louis Marty, Zhigang Zhu","doi":"10.1016/j.talanta.2024.127197","DOIUrl":"10.1016/j.talanta.2024.127197","url":null,"abstract":"<p><p>A mouthguard electrochemical sensor for salivary glucose detection based on platinum metal hydrogel is proposed in this work. Conventional enzyme-based electrochemical glucose sensors are fraught with issues such as high cost, oxygen dependency, intricate immobilization procedures, and susceptibility to variations in temperature, pH, and so on. The detection of glucose in saliva, as a non-invasive sensing approach, presents a more convenient solution for diabetes monitoring. This study employs Pt metal hydrogel as the electrocatalytic material for glucose, with its microstructure characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The sensor's electrochemical properties, sensing performance, anti-interference capability, and stability were assessed through methods including cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). Under neutral pH phosphate buffer (PB) solution in the laboratory setting, the sensor demonstrated an outstanding linear range (0-40 mM) and a low detection limit (0.119 mM). Implemented in a wearable mouthguard format, this electrochemical sensor enables the detection of glucose in physiological environments, specifically saliva, exhibiting favorable detection characteristics: a linear range of 0.58-3.08 mM and a detection limit of 0.082 mM. This innovation thus offers a practical and efficacious tool for the non-invasive monitoring of glucose levels relevant to diabetes management.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127197"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-02-01DOI: 10.1016/j.talanta.2025.127684
Shiji Liu , Liang Shuai , Qian Zhu , Lei Cao , Feng Gu , Lanlan Fan , Shixian Xiong
{"title":"All-aerosol-jet-printed Fe3+ modified bilayers polyaniline flexible room temperature sensor with enhanced ammonia sensing properties","authors":"Shiji Liu , Liang Shuai , Qian Zhu , Lei Cao , Feng Gu , Lanlan Fan , Shixian Xiong","doi":"10.1016/j.talanta.2025.127684","DOIUrl":"10.1016/j.talanta.2025.127684","url":null,"abstract":"<div><div>The rapid advancement of human-machine interaction (HMI), the Internet of Things (IoTs), and artificial intelligence (AI) has imposed greater demands on the ambient temperature wearable performance of sensors. In this study, the Fe<sup>3+</sup> modified bilayers polyaniline (PANI) flexible room temperature ammonia sensor is prepared by all-aerosol-jet-printed. The increased protonation degree of the PANI film produced by this method was elucidated through analysis of aerosol microdroplet evaporation behavior, while the improved ammonia sensing performance of the PANI/Fe<sup>3+</sup> dendritic structure was explained using soft and hard acid-base theory. Gas sensing tests demonstrated that the PANI/Fe<sup>3+</sup> sensor exhibited high sensitivity to ammonia (776 % at 55 ppm), a wide detection range (547 ppb-547 ppm), as well as excellent selectivity, flexibility, and cyclic stability. These results underscore its potential for application in ambient temperature wearable fields.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"Article 127684"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143179432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-02-01DOI: 10.1016/j.talanta.2025.127677
Jayden Lee Roberts , Monique J. Ryan , Luke Whiley , Melvin Gay , Vimalnath Nambiar , Elaine Holmes , Jeremy K. Nicholson , Julien Wist , Nicola Gray , Nathan G. Lawler
{"title":"Dried blood spot microsampling: A semi-quantitative 4D-lipidomics approach using ultrahigh-performance liquid chromatography - high-resolution mass spectrometry (UHPLC - HRMS)","authors":"Jayden Lee Roberts , Monique J. Ryan , Luke Whiley , Melvin Gay , Vimalnath Nambiar , Elaine Holmes , Jeremy K. Nicholson , Julien Wist , Nicola Gray , Nathan G. Lawler","doi":"10.1016/j.talanta.2025.127677","DOIUrl":"10.1016/j.talanta.2025.127677","url":null,"abstract":"<div><div>Dried blood spot (DBS) sample collections can offer a minimally invasive, cost-effective alternative to traditional venepuncture for remote sampling and high-frequency metabolic profiling. We present an optimized protocol for DBS-based extraction and comprehensive untargeted 4D lipid profiling using ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (trapped ion mobility - mass spectrometry), designed to support large-scale applications in population-wide lipidomics research. Inclusion of stable isotopically labelled internal standards allowed for semi-quantitative subclass-level correction for 10 μL DBS samples, enhancing the number of reproducible lipids within our curated target list (focussed on 432 unique rule-based lipid annotations out of 6845 features) across positive and negative heated electrospray ionization modes. The reproducibility of unique lipid features detected in replicate DBS (n = 6) was assessed on both peak areas (351 lipids <25 % CV) and calculated concentrations relative to internal standards (432 lipids <25 % CV), underscoring the benefit of internal standard addition. Storage conditions for DBS were also evaluated to determine short-term lipid stability at different temperatures (−20 °C, 4 °C, room temperature, and 45 °C). The majority of lipid subclasses, excluding a minority of glycerophospholipids and oxylipins, were stable up to 1 week at −20 °C and 4 °C (log<sub>2</sub>-fold change <30 % difference), which supports the short-term storage capacity for DBS in field and clinical settings. Similar stability was observed within a week at room temperature, excluding phosphatidylethanolamines and phosphatidylglycerols (log<sub>2</sub>-fold change >30 % difference). Application of the optimized workflow to a microsampling device (n = 6) identified 432 unique lipid features (CV < 25 %) with three repeated samplings over an hour showing minimal impact on lipid profiles by principal component analysis, showing promise for high-frequency, longitudinal DBS monitoring in population health. This work represents a significant advance, highlighting the potential for reliable lipid analysis from DBS samples with short-term stability under various storage conditions, an important logistical benefit for remote or resource-limited settings.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"Article 127677"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143286350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TalantaPub Date : 2025-02-01DOI: 10.1016/j.talanta.2025.127688
Mani Arivazhagan , Mari Elancheziyan , Keehoon Won , Jaroon Jakmunee
{"title":"Surface engineered gold nanodendrites decorated flexible carbon fiber-based electrochemical sensor platform for sensitive detection of L-Cysteine in serum and urine samples","authors":"Mani Arivazhagan , Mari Elancheziyan , Keehoon Won , Jaroon Jakmunee","doi":"10.1016/j.talanta.2025.127688","DOIUrl":"10.1016/j.talanta.2025.127688","url":null,"abstract":"<div><div>In this work, highly dispersed gold nanodendrites (Au NDs) decorated flexible carbon fiber electrode (Au NDs@FCF electrode) were fabricated by facile, green, and one-step electrochemical deposition protocol and utilized for the direct electrochemical determination of L-Cysteine (L-Cys). The prepared Au NDs@FCF electrodes were characterized by SEM, HR-TEM, XRD, XPS, CV, and EIS towards the dimensions, surface morphological traits, crystalline nature, chemical composition, and electrochemical catalytic oxidation towards L-Cys and electrochemical active surface area (ECASA) of the Au NDs. The developed Au NDs@FCF electrode demonstrates an enzyme mimics electrocatalytic efficiency towards the oxidation of L-Cys at the operating potential of 0.82 V (<em>vs</em> Ag/AgCl) with a lower experimental detection limit of 0.16 nM, higher sensitivity of ∼50.2 μA μM<sup>−1</sup> cm<sup>−2</sup>, and a wide concentration ranges from 100 to 3000 nM with a correlation coefficient of <em>R</em><sup>2</sup> = 0.996. In addition, the developed Au NDs@FCF electrode has exhibited excellent selectivity with various anti-interferences such as glucose, dopamine, uric acid, Na<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, high reproducibility, and repeatability with RSD of 2.3 %. The Au NDs@FCF electrode demonstrates outstanding electrocatalytic oxidation and a rapid sensing response time of ∼3 s. The current Au NDs@FCF electrode achieving the successful detection of L-Cys in practical human serum and urine samples highlights its potential application in biomedical diagnostics. This advancement indicates that the sensor can effectively operate in real-world conditions, offering a valuable tool for medical professionals to monitor L-Cys levels in patients accurately.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"Article 127688"},"PeriodicalIF":5.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143286419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}