Talanta最新文献

筛选
英文 中文
Multiplexed bacterial recognition based on “All-in-One” semiconducting polymer dots sensor and machine learning 基于 "一体化 "半导体聚合物点传感器和机器学习的多重细菌识别技术
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-24 DOI: 10.1016/j.talanta.2024.126917
{"title":"Multiplexed bacterial recognition based on “All-in-One” semiconducting polymer dots sensor and machine learning","authors":"","doi":"10.1016/j.talanta.2024.126917","DOIUrl":"10.1016/j.talanta.2024.126917","url":null,"abstract":"<div><div>The accurate discrimination of bacterial infection is imperative for precise clinical diagnosis and treatment. Here, this work presents a simplified sensor array utilizing “All-in-One” Pdots for efficient discrimination of diverse bacterial samples. The “All-in-One” Pdots sensor (AOPS) were synthesized using three components that exhibit fluorescence resonance energy transfer (FRET) effect, facilitating the efficient integration of multiple discrimination channels to generate specific fluorescence response patterns through a single detection under single-wavelength excitation. Additionally, machine learning techniques were employed to visually represent the fluorescence response patterns of AOPS upon exposure to bacterial metabolites derived from diverse bacterial species. The as-prepared sensor platform demonstrated excellent performance in analyzing eight common bacteria, drug-resistant strains, mixed bacterial samples, bacterial biofilms and real samples, presenting significant potential in the identification of complex samples for bacterial analysis.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time analysis of the biomolecular interaction between gelsolin and Aβ1-42 monomer and its implication for Alzheimer's disease. 实时分析凝胶蛋白与 Aβ1-42 单体之间的生物分子相互作用及其对阿尔茨海默病的影响。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-24 DOI: 10.1016/j.talanta.2024.126938
Limin Ma, Tian Meng, Yu Wang, Yu Xue, Yuxin Zheng, Jinghuang Chen, Dongming Xu, Jian Sun, Fan Yang, Jianshe Huang, Xiurong Yang
{"title":"Real-time analysis of the biomolecular interaction between gelsolin and Aβ<sub>1-42</sub> monomer and its implication for Alzheimer's disease.","authors":"Limin Ma, Tian Meng, Yu Wang, Yu Xue, Yuxin Zheng, Jinghuang Chen, Dongming Xu, Jian Sun, Fan Yang, Jianshe Huang, Xiurong Yang","doi":"10.1016/j.talanta.2024.126938","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126938","url":null,"abstract":"<p><p>Biomolecular interaction acts a pivotal part in understanding the mechanisms underlying the development of Alzheimer's disease (AD). Herein, we built a biosensing platform to explore the interaction between gelsolin (GSN) and different β-amyloid protein 1-42 (Aβ<sub>1-42</sub>) species, including Aβ<sub>1-42</sub> monomer (m-Aβ), Aβ<sub>1-42</sub> oligomers with both low and high levels of aggregation (LLo-Aβ and HLo-Aβ) via dual polarization interferometry (DPI). Real-time molecular interaction process and kinetic analysis showed that m-Aβ had the strongest affinity and specificity with GSN compared with LLo-Aβ and HLo-Aβ. The impact of GSN on inhibiting aggregation of Aβ<sub>1-42</sub> and solubilizing Aβ<sub>1-42</sub> aggregates was evaluated by circular dichroism (CD) spectroscopy. The maintenance of random coil structure of m-Aβ and the reversal of β-sheet structure in HLo-Aβ were observed, demonstrating the beneficial effects of GSN on preventing Aβ from aggregation. In addition, the structure of m-Aβ/GSN complex was analyzed in detail by molecular dynamics (MD) simulation and molecular docking. The specific binding sites and crucial intermolecular forces were identified, which are believed to stabilize m-Aβ in its soluble state and to inhibit the fibrilization of Aβ<sub>1-42</sub>. Combined theoretical simulations and experiment results, we speculate that the success of GSN sequestration mechanism and the balance of GSN levels in cerebrospinal fluid and plasma of AD subjects may contribute to a delay in AD progression. This research not only unveils the molecular basis of the interaction between GSN and Aβ<sub>1-42</sub>, but also provides clues to understanding the crucial functions of GSN in AD and drives the development of AD drugs and therapeutic approaches.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A. 基于 PCN-224-Mn 和金铂双金属纳米流的电化学发光免疫分析系统,用于灵敏检测赭曲霉毒素 A。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-24 DOI: 10.1016/j.talanta.2024.126937
Yue Kong, Xinyue Qian, Xiao Mei, Jun Ma, Kang Wu, Anping Deng, Jianguo Li
{"title":"Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A.","authors":"Yue Kong, Xinyue Qian, Xiao Mei, Jun Ma, Kang Wu, Anping Deng, Jianguo Li","doi":"10.1016/j.talanta.2024.126937","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126937","url":null,"abstract":"<p><p>In this work, a novel Electrochemiluminescence Immunosensor was constructed using PCN-224-Mn and gold-platinum nanoflowers (AuPt NFs) for the ultrasensitive detection of ochratoxin A (OTA). PCN-224 modified with Mn (II) was synthesized as a probe material. The interaction efficiency of PCN-224 with S<sub>2</sub>O<sub>8</sub><sup>2-</sup> was also greatly improved. AuPt NFs were used as the substrate material for the electrodes. It has favorable biocompatibility, large specific surface area and can bind more antigen. Also greatly increased the electroactive surface area and conductivity of the electrode. OTA was detected using a competitive immunoassay strategy, in which OTA in the sample competes with the encapsulated antigen for a finite number of antibodies. ECLIA for the detection of OTA was designed to be highly sensitive, with a linear range from 0.0002 ng mL<sup>-1</sup> to 1000 ng mL<sup>-1</sup> and a LOD as low as 0.067 pg mL<sup>-1</sup>. In addition, it was evident from the electrochemical analyses that PCN-224-Mn had a stronger and more stable ECL signal compared to the plain PCN-224. The successful preparation of specific, sensitive and reproducible ECL immunosensors confirms the great promise for the detection of OTA or other small molecule mycotoxins.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated identification and detection of hydration state and its evolution using terahertz technology. 利用太赫兹技术综合识别和检测水合状态及其演变。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-24 DOI: 10.1016/j.talanta.2024.126943
Rong Zhao, Qiang Niu, Ghulam Murtaza, Guling Zhang, Yuping Yang
{"title":"Integrated identification and detection of hydration state and its evolution using terahertz technology.","authors":"Rong Zhao, Qiang Niu, Ghulam Murtaza, Guling Zhang, Yuping Yang","doi":"10.1016/j.talanta.2024.126943","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126943","url":null,"abstract":"<p><p>The accurate detection of dehydration processes in hydrated drugs can reveal various intermolecular vibration modes mediated by hydrogen bonds between water molecules and other components, which underpin the further development of pharmaceutical science, food safety and biophysics. Herein, terahertz (THz) technology is utilized to investigate the dehydration state of d(+)-Raffinose pentahydrate (Rf·5H<sub>2</sub>O), in conjunction with imaging-based point by point scanning data acquisition and barcodes methods, to establish an innovative platform integrated identification, trace detection, and application capabilities. Our study demonstrates that the dehydration process of Rf·5H<sub>2</sub>O can be dynamically monitored through the evolution of its THz absorption peaks, offering more precise results compared to XRD and Raman spectroscopies. Moreover, the absorbance spectra data collected at each individual pixel is utilized to build visualized THz images, achieving an ultralow minimum content required for detection of 0.032 μg/(50 μm)<sup>2</sup>. Additionally, we introduce a THz spectra-barcode conversion system that not only ensures efficient electronic recordkeeping but also enhances user readability, thereby facilitating the practical applications of THz technology.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Cu–Ce-a nanozymes: Revolutionary alloy nanomaterials mimicking cytochrome c oxidase for ultra-sensitive cytochrome c detection Cu-Ce-a 纳米酶工程:模仿细胞色素 c 氧化酶的革命性合金纳米材料,用于超灵敏细胞色素 c 检测
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-24 DOI: 10.1016/j.talanta.2024.126945
{"title":"Engineering Cu–Ce-a nanozymes: Revolutionary alloy nanomaterials mimicking cytochrome c oxidase for ultra-sensitive cytochrome c detection","authors":"","doi":"10.1016/j.talanta.2024.126945","DOIUrl":"10.1016/j.talanta.2024.126945","url":null,"abstract":"<div><div>The design of synthetic analogs of cytochrome c oxidase (CcO) is a formidable task due to its intricate structure encompassing multiple metal prosthetic sites and protein subunits. In recent years, artificial enzymes based on alloy nanomaterials have garnered significant attention due to the alloy design approach holds promise for the effective tuning of the properties of metal catalysts. In this study, we present copper-cerium alloy nanozymes (Cu–Ce-a NEs), where Cu mimics the active site of CcO, while Ce endows the alloy phase and enhances the capacity to catalyze the oxidation to cytochrome c (Cyt c). Cu–Ce-a NEs functionally mimics CcO, the terminal enzyme in the respiratory electron transport chain (ETC), by catalyzing the four-electron reduction of dioxygen to water. Utilizing the CcO-like properties of Cu–Ce-a NEs, we successfully implemented the electrochemical detection of Cyt c. The Cu–Ce-a NEs based electrochemical sensor revealed a favorable linear range spanning from 2 to 20 μM Cyt c, with a detection limit (LOD) of 2 μM. This method demonstrates high accuracy in Cyt c quantitation in pharmaceuticals, with results closely aligning with the actual concentrations. This finding not only offers new perspectives in the design of enzyme analogs, but also underscores the potential of this method for clinical Cyt c detection, highlighting its significance in biomedical research and diagnostics.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemiluminescence sensor for organophosphorus pesticides based on the regulation of resonance energy transfer between negative charged gold nanorods and Ru(bpy)32. 基于负电荷金纳米棒与 Ru(bpy)32 之间共振能量转移调节的有机磷农药电化学发光传感器。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-23 DOI: 10.1016/j.talanta.2024.126934
Zixin Li, Zeyu Lin, Lifen Chen, Yue Lin, Fang Luo, Cuiying Lin, Jian Wang, Bin Qiu, Zhenyu Lin
{"title":"Electrochemiluminescence sensor for organophosphorus pesticides based on the regulation of resonance energy transfer between negative charged gold nanorods and Ru(bpy)<sub>3</sub><sup>2</sup>.","authors":"Zixin Li, Zeyu Lin, Lifen Chen, Yue Lin, Fang Luo, Cuiying Lin, Jian Wang, Bin Qiu, Zhenyu Lin","doi":"10.1016/j.talanta.2024.126934","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126934","url":null,"abstract":"<p><p>Combined the electrostatic interaction of the negatively charged gold nanorods (AuNRs) (as acceptor) and Ru(bpy)<sub>3</sub><sup>2+</sup> (as donor), an electrochemiluminescence resonance energy transfer (ECL-RET) sensor was constructed and applied for the detection of organophosphorus pesticides (OPs). Negatively charged AuNRs were synthesized by modifying AuNRs with polystyrene sulfonate (PSS) firstly, which can bind to Ru(bpy)<sub>3</sub><sup>2+</sup> through electrostatic interaction so that the luminophore was absorbed by the acceptor, the resonance energy transfer occurred and only low ECL signal had been detected. Thiocholine can be produced by the hydrolysis process of acetylthiocholine (ATCh) with the help of acetylcholinesterase (AChE), which can bond with PSS-modified AuNRs (PSS-AuNRs) through gold-sulfur interaction, this caused the releasing of the adsorbed Ru(bpy)<sub>3</sub><sup>2+</sup> into the solution and resulting in the restoration of the ECL intensity. However, the activity of AChE was inhibited by OPs, and the recovery process of the ECL signal was thus suppressed as well. In this study, chlorpyrifos was chosen as model target, the results indicated that the correlation between the ECL intensity and the logarithm of chlorpyrifos concentration showed remarkable linearity across 1 ng/mL to 1 mg/mL, achieving a detection limit of 0.51 ng/mL. The proposed system has been utilized for detecting OPs in real samples with satisfied results.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multipath collaboration-based signal amplification on Z-scheme In2O3/g-C3N4 heterojunction photoelectrode for sensitive photoelectrochemical immunoassay. 在 Z 型 In2O3/g-C3N4 异质结光电电极上进行基于多径协作的信号放大,用于灵敏的光电化学免疫分析。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-23 DOI: 10.1016/j.talanta.2024.126935
Yuxiang Dong, Weisa Wang, Cheng Guo, Jialin Wang, Dan Li, Changqing Ye
{"title":"Multipath collaboration-based signal amplification on Z-scheme In<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction photoelectrode for sensitive photoelectrochemical immunoassay.","authors":"Yuxiang Dong, Weisa Wang, Cheng Guo, Jialin Wang, Dan Li, Changqing Ye","doi":"10.1016/j.talanta.2024.126935","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126935","url":null,"abstract":"<p><p>The ideal photoelectrode and efficient signaling strategy are pivotal to achieve sensitive photoelectrochemical (PEC) analysis. Here, a multipath collaborative signal amplification-based PEC immunosensor was constructed for the ultrasensitive detection of cytokeratin 19 fragment 21-1. Specifically, the photoelectrode fabricated by Z-scheme In<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction showed enhanced photocurrent intensity in response to visible light. Meanwhile, the signal probe, horseradish peroxidase functionalized dopamine-melanin nanosphere@Au nanoparticles (HRP-Dpa-melanin NS@AuNPs), were introduced into the system. When the target exists, the signal probe can induce multiple quenching of the photocurrent due to the competition of light absorption, steric hindrance and HRP-mediated biocatalytic precipitation, which effectively inhibit light, electron donor, and electron access to the photoelectrode. The fabricated immunosensor exhibits a wide linear range from 1.0 × 10<sup>-3</sup> - 1.0 × 10<sup>2</sup> ng mL<sup>-1</sup> with the detection limit of 0.35 pg mL<sup>-1</sup> (S/N = 3) for cytokeratin 19 fragment 21-1 detection. The study enhances sensitivity for PEC detection by utilizing the superior Z-scheme heterojunction photoelectrode, providing a valuable method that combines multiple signal pathways for a synergistic effect in bioanalysis.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signal processing for miniature mass spectrometer based on LSTM-EEMD feature digging. 基于 LSTM-EEMD 特征挖掘的微型质谱仪信号处理。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-23 DOI: 10.1016/j.talanta.2024.126904
Chenrui Zhan, Zisheng Ju, Binrui Xie, Jiwen Chen, Qiang Ma, Ming Li
{"title":"Signal processing for miniature mass spectrometer based on LSTM-EEMD feature digging.","authors":"Chenrui Zhan, Zisheng Ju, Binrui Xie, Jiwen Chen, Qiang Ma, Ming Li","doi":"10.1016/j.talanta.2024.126904","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126904","url":null,"abstract":"<p><p>Miniature mass spectrometers exhibit immense application potential in on-site detection due to their small size and low cost. However, their detection accuracy is severely affected by factors such as sample pre-processing and environmental conditions. In this study, we propose a data processing method based on long short-term memory-ensemble empirical mode decomposition (LSTM-EEMD) to improve the quality of on-site detection data from miniature mass spectrometers. The EEMD method can clearly decompose the different physical feature components in the small-scale spectrometer signals, while the LSTM method can adaptively learn the internal feature relationships of the signals. Thus, by combining the two, the parameters for the EEMD signal reconstruction can be optimized in an adaptive manner, obtaining the optimized coefficients. Compared to the previous EEMD feature enhancement approach, the LSTM-EEMD method not only significantly improves the coefficient of determination (R<sup>2</sup>) and relative standard deviation (RSD) of the data, enhancing the linear range, but also achieves fully adaptive processing throughout the workflow, greatly boosting the efficiency. By leveraging a miniature mass spectrometer, data for N-acetyl-l-aspartic acid (NAA), 2-Hydroxyglutarate (2-HG), and γ-Aminobutyric acid (GABA) in actual blood samples have been obtained. The experimental results demonstrate that the LSTM-EEMD method can markedly enhance the accuracy and usability of the biological sample data in practical testing, providing new perspectives and possibilities for research and applications in the relevant domain.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valence fixable ferrozine gel rod combined with smartphone for facile determination of redox-active Fe2+ in environmental water. Valence fixable ferrozine gel rod 与智能手机相结合,轻松测定环境水体中具有氧化还原活性的 Fe2+。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-22 DOI: 10.1016/j.talanta.2024.126933
Peng'an Zhu, Jiangle Zhang, Jingjing Jin, Xing Huang, Xinfeng Zhang
{"title":"Valence fixable ferrozine gel rod combined with smartphone for facile determination of redox-active Fe<sup>2+</sup> in environmental water.","authors":"Peng'an Zhu, Jiangle Zhang, Jingjing Jin, Xing Huang, Xinfeng Zhang","doi":"10.1016/j.talanta.2024.126933","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126933","url":null,"abstract":"<p><p>Ferrous ion (Fe<sup>2+</sup>) can indicate the redox situation of water and also plays an important role in maintaining the ecological balance of water bodies. However, due to the redox-active property of Fe<sup>2+</sup>, it is still a huge challenge to sensitively and accurately determine Fe<sup>2+</sup> especially in interstitial water. Herein, we prepared a ferrozine gel rod for valence fixation during sampling and subsequent smartphone-based detection of Fe<sup>2+</sup>. The electrode potential of the redox pair can be varied through the formation of Fe<sup>2+</sup>-ligand complexes, and when E<sub>complex</sub> was higher than [Formula: see text] , the oxidation of Fe<sup>2+</sup> by O<sub>2</sub> was hindered, thus achieving the valence fixation of Fe<sup>2+</sup>. Six ligands were screened, and it was found that ferrozine could effectively increase the redox potential after complexing with Fe<sup>2+</sup>, and also exhibits an obvious color change while fixing the valence of Fe<sup>2+</sup>. To facilitate Fe<sup>2+</sup> detection, a cross-linked porous polymer gel rod prepared by acrylamide and sodium alginate was used to encapsulate the ferrozine molecules. The ferrozine gel rod enabled fixation the valence of Fe<sup>2+</sup> longer than 30 days, and the resulted purple-red color was pictured and analyzed by a smartphone. Ultimately, the developed ferrozine gel rod sensing system was able to achieve sensitive and linear detection of Fe<sup>2+</sup> in the range of 1-200 μM with the limit of detection as low as 0.33 μM, and it also exhibited excellent selectivity and anti-interference ability. The accuracy and reliability of the method was verified by the determination of Fe<sup>2+</sup> in spiked water samples and certified standard reference water samples. Finally, the ferrozine gel rod sensing system was successfully applied to in-situ detection of Fe<sup>2+</sup> in interstitial water, overlying water and upper water of lake and river. This facile system that enabled valence fixation and fast detection is promising for detection of Fe<sup>2+</sup> in environmental waters.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amino-rich silicon quantum dots as efficient activator with intrinsic chemiluminescence for the detection of peroxydisulfate. 富含氨基的硅量子点作为高效活化剂,具有内在化学发光功能,可用于过硫酸盐的检测。
IF 5.6 1区 化学
Talanta Pub Date : 2024-09-22 DOI: 10.1016/j.talanta.2024.126931
Dayang Zhao, Hui Gong, Houjing Liu
{"title":"Amino-rich silicon quantum dots as efficient activator with intrinsic chemiluminescence for the detection of peroxydisulfate.","authors":"Dayang Zhao, Hui Gong, Houjing Liu","doi":"10.1016/j.talanta.2024.126931","DOIUrl":"https://doi.org/10.1016/j.talanta.2024.126931","url":null,"abstract":"<p><p>The specific detection of peroxydisulfate (S<sub>2</sub>O<sub>8</sub><sup>2-</sup>, PDS) is significant and challenging due to the rapid development of PDS-related technologies and their widespread application in multiple fields. However, traditional analytical methods are mainly based on their strong oxidizing properties, making it difficult to simultaneously achieve specific identification and high sensitivity for PDS detection in complex water environments. Here, we purposely prepared amino-rich SiQDs (N-SiQDs) as an effective catalyst and introduced H<sub>2</sub>O<sub>2</sub> acts as a co-reactant for PDS activation and determination with strong intrinsic chemiluminescence (CL) emission. High yield of reactive active oxygen (mainly O<sub>2</sub>˙<sup>-</sup> and ˙OH) were generated during CL process, which trigger electron-hole annihilation between the N-SiQDs˙<sup>+</sup> and N-SiQDs˙<sup>-</sup> accounted for extraordinary CL emission. On this basis, a new CL assay for PDS detection was fabricated with broad linear range of 5 × 10<sup>-7</sup>M-5 × 10<sup>-5</sup> M and low detection limit (3.2 × 10<sup>-7</sup> M). Due to the absence of SO<sub>4</sub>˙<sup>-</sup> involvement during CL emission, the sensing platform is sensitive enough, satisfactory selectivity and does not respond to transition-metal ions and inorganic anions that have interferences in the PDS CL sensors reported before. This work not only deepens insight into the mechanisms of nanomaterials assisted PDS activation but also provides a new perspective on the modified metal-free QDs CL probe for chemical species detection.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信