{"title":"Synthetic Immunology—Building Immunity from the Bottom-Up with Synthetic Cells","authors":"Oskar Staufer","doi":"10.1002/anbr.202400037","DOIUrl":"10.1002/anbr.202400037","url":null,"abstract":"<p>Synthetic cells can advance immunotherapy, offering innovative approaches to understanding and enhancing immune responses. This review article delves into the advancements and potential of synthetic cell technologies in immunology, emphasizing their role in understanding and manipulating immune functions. Recent progress in understanding vertebrate immune systems and the challenges posed by diseases highlight the need for innovative research methods, complementing the analysis of multidimensional datasets and genetic engineering. Synthetic immune cell engineering aims to simplify the complexity of immunological systems by reconstructing them in a controlled setting. This approach, alongside high-throughput strategies, facilitates systematic investigations into immunity and the development of novel treatments. The article reviews synthetic cell technologies, focusing on their alignment with the three laws of immunity: universality, tolerance, and appropriateness. It explores the integration of synthetic cell modules to mimic processes such as controlled T-cell activation, bacteria engulfment and elimination, or cellular maturation into desirable phenotypes. Together, such advancements expand the toolbox for understanding and manipulating immune functions. Synthetic cell technologies stand at the innovation crossroads in immunology, promising to illuminate fundamental immune system principles and open new avenues for research and therapy.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 9","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141367351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamyaa Albakr, Hongyuan Du, Xiyuan Zhang, Himanshu Kathuria, Ahmed Fahmi Anwar-Fadzil, Nial J. Wheate, Lifeng Kang
{"title":"Progress in Lipid and Inorganic Nanocarriers for Enhanced Skin Drug Delivery","authors":"Lamyaa Albakr, Hongyuan Du, Xiyuan Zhang, Himanshu Kathuria, Ahmed Fahmi Anwar-Fadzil, Nial J. Wheate, Lifeng Kang","doi":"10.1002/anbr.202470061","DOIUrl":"https://doi.org/10.1002/anbr.202470061","url":null,"abstract":"<p><b>Nanocarrier</b>\u0000 </p><p>Overview of the most used nanocarriers for therapeutics delivery via skin, covering the lipid-based such as liposomes and the inorganic such as carbon nanotubes. The review article focuses on their applications and the challenges that limit their clinical adoptions. More details can be found in article 2400003 by Lifeng Kang and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transdermal Delivery of Polymeric Nanoparticles Containing Aconite Root for the Treatment of Chemotherapy-Induced Peripheral Neuropathy","authors":"Tae Eon Park, Man-Suk Hwang, Ki Su Kim","doi":"10.1002/anbr.202470051","DOIUrl":"https://doi.org/10.1002/anbr.202470051","url":null,"abstract":"<p><b>Transdermal Nanomedicine</b>\u0000 </p><p>The chemotherapy-induced peripheral neuropathy (CIPN) caused by anticancer drugs results in severe pain for patients. In article number 2400006, Tae Eon Park, Man-Suk Hwang, and Ki Su Kim have developed hyaluronic acid-based polymeric nanoparticles containing natural herb extracts to alleviate neuropathic pain caused by CIPN. These particles are delivered non-invasively through the skin, contributing to nerve regeneration.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nimeet Desai, Vishakha Tambe, Prasad Pofali, Lalitkumar K. Vora
{"title":"Cell Membrane-Coated Nanoparticles: A New Frontier in Immunomodulation","authors":"Nimeet Desai, Vishakha Tambe, Prasad Pofali, Lalitkumar K. Vora","doi":"10.1002/anbr.202400012","DOIUrl":"https://doi.org/10.1002/anbr.202400012","url":null,"abstract":"<p>Immune dysregulation is a pivotal factor in the onset and progression of various diseases. In cancer, the immune system's inability to discern and eliminate abnormal cells leads to uncontrolled tumor growth. When faced with resilient pathogens or harmful toxins, the immune system encounters challenges in clearance and neutralization. Achieving a delicate balance of pro-inflammatory and anti-inflammatory signals is essential in managing a range of disorders and diseases. Like in other biomedical research domains, nanotechnology has provided innovative approaches for rebalancing host immunity. Among the plethora of nanotechnology-based interventions, the concept of cell membrane-coated nanoparticles holds significant potential for immunomodulatory applications owing to their biomimetic properties that allow for precise interaction with the compromised immune system. This review thoroughly examines the potential of novel nanosystems for immune modulation. The exploration covers crucial elements, including the origins and characteristics of cell membranes, the methods employed for their procurement and coating, physicochemical/biological characterization techniques, and enhancement of their therapeutic efficacy via functionalization. Subsequently, case studies-based analysis of utilizing these bioinspired nanosystems in tackling different conditions caused by immune disturbance has been comprehensively discussed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances of Nanobiomaterials for Treating Skin Pathological Fibrosis","authors":"Yongyuan Kang, Xiaowei Liu, Xiping Chen, Yiyuan Duan, Jie Wang, Changyou Gao","doi":"10.1002/anbr.202400008","DOIUrl":"https://doi.org/10.1002/anbr.202400008","url":null,"abstract":"<p>Skin pathological fibrosis conditions, such as hypertrophic scars (HS) and keloids, where the scar tissue is raised and extends beyond the original wound boundary, are aesthetically unappealing and sometimes painful or itchy, significantly impacting the life quality of patients. In this review, the advances of nanobiomaterials in treating skin pathological fibrosis are summarized and discussed. The focus is on the therapeutic approaches to cellular and molecular targets of HS, highlighting the potential of nanotechnology in scar management. The biofunctional nanomaterials can modulate inflammation, regulate angiogenesis, and promote fibroblast apoptosis. The nanotechnology-based drug delivery systems such as liposomes, ethosomes, and dendritic macromolecules can improve the solubility, stability, and efficacy of drugs, and enhance precise delivery, resulting in better outcomes in HS therapy. Integrating nanomaterials or nanostructures into hydrogels, nanofibers, and microneedles can enhance the biological functionality and maximize the therapeutic effect of nanoparticles (NPs) at the wound site. The important potential of nanotechnology-based scar treatment should be further explored to overcome the current challenges and promote its application in clinical practice.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avijit Baidya, Annabella Budiman, Saumya Jain, Yavuz Oz, Nasim Annabi
{"title":"Engineering Tough and Elastic Polyvinyl Alcohol-Based Hydrogel with Antimicrobial Properties","authors":"Avijit Baidya, Annabella Budiman, Saumya Jain, Yavuz Oz, Nasim Annabi","doi":"10.1002/anbr.202300173","DOIUrl":"10.1002/anbr.202300173","url":null,"abstract":"<p>Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made toward designing hydrogels for soft tissue repair, engineering hydrogels that resemble load-bearing tissues is still considered a great challenge due to their specific mechanophysical demands. Herein, microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)-based hydrogels are reported for potential applications in repairing or replacing different load-bearing tissues. The synergy of freeze-thawing and the Hofmeister effect, which controlled the spatial arrangement and aggregation of polymer chains, facilitated the formation of microstructured frameworks with tunable porosity. While the maximum mechanical strength, toughness, and stretchability of the engineered hydrogel were ≈390 kPa, ≈388 kJ m<sup>−3</sup>, and ≈170%, respectively, Young's modulus based on compression testing wasfound to be in the range of ≈0.02–0.30 MPa, highlighting the all-in-one mechanically enriched nature of the hydrogel. Furthermore, the minimal swelling and degradation rate of the engineered hydrogel met the specific requirements for load-bearing tissues. Finally, excellent antibacterial resistance as well as in vitro biocompatibility of the hydrogel demonstrates its potential for the replacement of load-bearing tissues.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 9","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual Drug Delivery in Cancer Therapy Using Graphene Oxide-Based Nanoplatforms","authors":"Ludmila Žárská, Eoin Moynihan, Arianna Rossi, Giada Bassi, Pavlína Balatková, Elisabetta Campodoni, Maria Galiana Cameo, Monica Montesi, Diego Montagner, Vaclav Ranc, Silvia Panseri","doi":"10.1002/anbr.202400026","DOIUrl":"10.1002/anbr.202400026","url":null,"abstract":"<p>Many types of cancer are currently treated using a combination of chemotherapeutics, but unfortunately, this strategy is considerably limited by severe side effects. The current development of nanocarriers enables the use of multiple drugs anchored on one unique platform thus enhancing the initiated therapeutic effect and minimizing the possibility of drug resistance. In this context, a graphene-oxide-based 2D nanoplatform is developed, which is functionalized using highly branched polyethylene-glycol and a multimodal set of two drugs with various mechanisms of action, namely Pt-based complex (a Pt(IV) prodrugs based on cisplatin) and doxorubicin (DOX). We performed in vitro 2D screening on two cancer cell lines, namely glioblastoma and osteosarcoma, that were selected as models of two aggressive tumors that remain a massive challenge in oncology. The therapeutic effect of the developed nano-platform is higher at lower concentrations (15 μ<span>m</span> of Pt-drug, 0.6 μ<span>m</span> DOX) compared to the impact of the free drugs. This indicates a possible positive effect of the accumulation and transport of the drugs using this nanoplatform. Results obtained on 3D cell models using MG63 osteosarcoma cells uncovered an understandable lowered diffusion profile of the developed nanoplatforms, compared to the application of free drugs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 9","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamyaa Albakr, Hongyuan Du, Xiyuan Zhang, Himanshu Kathuria, Ahmed Fahmi Anwar-Fadzil, Nial J. Wheate, Lifeng Kang
{"title":"Progress in Lipid and Inorganic Nanocarriers for Enhanced Skin Drug Delivery","authors":"Lamyaa Albakr, Hongyuan Du, Xiyuan Zhang, Himanshu Kathuria, Ahmed Fahmi Anwar-Fadzil, Nial J. Wheate, Lifeng Kang","doi":"10.1002/anbr.202400003","DOIUrl":"10.1002/anbr.202400003","url":null,"abstract":"<p>New advancements in nanocarrier technologies are revolutionizing the delivery of drugs through the skin, allowing for precise treatment with better absorption, stability, and bioavailability. This review investigates lipid and inorganic nanocarriers like liposomes, ethosomes, and inorganic nanoparticles and assesses their potential for delivering drugs through the skin. It emphasizes the mechanisms that enable controlled release and deeper skin penetration, which are crucial for ensuring effectiveness in clinical applications. The review synthesizes existing research, acknowledging that only few nanocarriers are successfully deployed in clinical settings. By offering a comprehensive overview, it sheds light on the progress and future obstacles to using nanocarriers for drug delivery through the skin.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140981287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanna Lutz, Yidong Yu, Ann-Katrin Wolf, Andreas Beilhack, Jürgen Groll, Krystyna Albrecht
{"title":"Impact of Surface Functionality on Biodistribution of Gold Nanoparticles in Silkworms","authors":"Johanna Lutz, Yidong Yu, Ann-Katrin Wolf, Andreas Beilhack, Jürgen Groll, Krystyna Albrecht","doi":"10.1002/anbr.202200146","DOIUrl":"10.1002/anbr.202200146","url":null,"abstract":"<p>To date, animal models are still indispensable for studying biodistribution and elimination of nanomaterials. However, the use of mammals for in vivo experiments faces various challenges including increasing regulatory hurdles and costs. This study aims to validate larvae of the domestic silkworm <i>Bombyx mori</i> as an alternative invertebrate model for preliminary in vivo research. Organ distribution and elimination of gold nanoparticles (AuNPs) are compared with four different surface functionalities in silkworms after systemic administration: AuNPs coated with poly(ethylene glycol) (PEG), with polyglycidols (PGs) that are slightly hydrophobic (PG(alkyl)), positively charged (PG(+)), or negatively charged (PG(−)). Subsequent inductive coupled plasma mass spectrometry 6 or 24 h after AuNPs administration reveals the biodistribution in silkworm hemolymph, midgut, epidermis, and excrements. Even after 24 h incubation, hemolymph contains the highest AuNPs concentrations, independent of surface functionalization indicating a prolonged circulation time and slow distribution into different silkworm organs and tissues. Positively charged PG(+)AuNPs show three times higher concentrations in the midgut and are excreted at the fastest rate when compared to other AuNPs. In the findings, a surface-dependent biodistribution and elimination of AuNPs are indicated in silkworms, and the feasibility of using this inexpensive animal model for time- and cost-effective, preliminary in vivo studies of NPs is confirmed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202200146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moon Sung Kang, Hee Jeong Jang, Jeong Min Kim, Hyo Jung Jo, Kyung Min Park, Young-Hwa Chung, Dong-Wook Han
{"title":"Evaluation of Anti-inflammatory Activity of Garlic Extracts in 3D Bioprinted Skin Equivalents","authors":"Moon Sung Kang, Hee Jeong Jang, Jeong Min Kim, Hyo Jung Jo, Kyung Min Park, Young-Hwa Chung, Dong-Wook Han","doi":"10.1002/anbr.202400007","DOIUrl":"10.1002/anbr.202400007","url":null,"abstract":"<p>Ongoing obstacles in preclinical drug testing have raised significant concerns within the pharmaceutical industry. Recently, utilizing the potential of three-dimensional (3D) bioprinting offers a solution for creating tissue models for screening of the effectiveness and safety of new drugs. In this study, the anti-inflammatory potential of garlic extracts is assessed, specifically N-Benzyl-N-methyl-dodecan-1-amine (BMDA), using a 3D bioprinted artificial skin model. Comprehensive physicochemical characterization and immunocytochemical analysis demonstrate that the 3D bioprinted skin model exhibits structures and functions resembling human skin. BMDA treatment in a prepared skin model reveals its capacity to mitigate H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and trigger anti-inflammatory responses. Notably, BMDA reduces the expression of pro-inflammatory cytokines and chemokines by downregulating NF-<i>κ</i>B and mitogen-activated protein kinase inflammatory signaling pathways. In summary, our findings highlight the potential of an artificial skin model as a robust platform for the development of new drugs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141013111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}