{"title":"纳米生物材料在治疗皮肤病理性纤维化方面的进展","authors":"Yongyuan Kang, Xiaowei Liu, Xiping Chen, Yiyuan Duan, Jie Wang, Changyou Gao","doi":"10.1002/anbr.202400008","DOIUrl":null,"url":null,"abstract":"<p>Skin pathological fibrosis conditions, such as hypertrophic scars (HS) and keloids, where the scar tissue is raised and extends beyond the original wound boundary, are aesthetically unappealing and sometimes painful or itchy, significantly impacting the life quality of patients. In this review, the advances of nanobiomaterials in treating skin pathological fibrosis are summarized and discussed. The focus is on the therapeutic approaches to cellular and molecular targets of HS, highlighting the potential of nanotechnology in scar management. The biofunctional nanomaterials can modulate inflammation, regulate angiogenesis, and promote fibroblast apoptosis. The nanotechnology-based drug delivery systems such as liposomes, ethosomes, and dendritic macromolecules can improve the solubility, stability, and efficacy of drugs, and enhance precise delivery, resulting in better outcomes in HS therapy. Integrating nanomaterials or nanostructures into hydrogels, nanofibers, and microneedles can enhance the biological functionality and maximize the therapeutic effect of nanoparticles (NPs) at the wound site. The important potential of nanotechnology-based scar treatment should be further explored to overcome the current challenges and promote its application in clinical practice.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400008","citationCount":"0","resultStr":"{\"title\":\"Advances of Nanobiomaterials for Treating Skin Pathological Fibrosis\",\"authors\":\"Yongyuan Kang, Xiaowei Liu, Xiping Chen, Yiyuan Duan, Jie Wang, Changyou Gao\",\"doi\":\"10.1002/anbr.202400008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skin pathological fibrosis conditions, such as hypertrophic scars (HS) and keloids, where the scar tissue is raised and extends beyond the original wound boundary, are aesthetically unappealing and sometimes painful or itchy, significantly impacting the life quality of patients. In this review, the advances of nanobiomaterials in treating skin pathological fibrosis are summarized and discussed. The focus is on the therapeutic approaches to cellular and molecular targets of HS, highlighting the potential of nanotechnology in scar management. The biofunctional nanomaterials can modulate inflammation, regulate angiogenesis, and promote fibroblast apoptosis. The nanotechnology-based drug delivery systems such as liposomes, ethosomes, and dendritic macromolecules can improve the solubility, stability, and efficacy of drugs, and enhance precise delivery, resulting in better outcomes in HS therapy. Integrating nanomaterials or nanostructures into hydrogels, nanofibers, and microneedles can enhance the biological functionality and maximize the therapeutic effect of nanoparticles (NPs) at the wound site. The important potential of nanotechnology-based scar treatment should be further explored to overcome the current challenges and promote its application in clinical practice.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 8\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Advances of Nanobiomaterials for Treating Skin Pathological Fibrosis
Skin pathological fibrosis conditions, such as hypertrophic scars (HS) and keloids, where the scar tissue is raised and extends beyond the original wound boundary, are aesthetically unappealing and sometimes painful or itchy, significantly impacting the life quality of patients. In this review, the advances of nanobiomaterials in treating skin pathological fibrosis are summarized and discussed. The focus is on the therapeutic approaches to cellular and molecular targets of HS, highlighting the potential of nanotechnology in scar management. The biofunctional nanomaterials can modulate inflammation, regulate angiogenesis, and promote fibroblast apoptosis. The nanotechnology-based drug delivery systems such as liposomes, ethosomes, and dendritic macromolecules can improve the solubility, stability, and efficacy of drugs, and enhance precise delivery, resulting in better outcomes in HS therapy. Integrating nanomaterials or nanostructures into hydrogels, nanofibers, and microneedles can enhance the biological functionality and maximize the therapeutic effect of nanoparticles (NPs) at the wound site. The important potential of nanotechnology-based scar treatment should be further explored to overcome the current challenges and promote its application in clinical practice.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.