Advanced Nanobiomed Research最新文献

筛选
英文 中文
Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor 利用 1DZnO 光学纳米生物传感器进行实时纳米级细菌检测
IF 4
Advanced Nanobiomed Research Pub Date : 2024-11-07 DOI: 10.1002/anbr.2024700111
Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt
{"title":"Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor","authors":"Rafael A. Salinas,&nbsp;Shirlley E. Martínez Tolibia,&nbsp;Andrés Galdámez-Martínez,&nbsp;Josué E. Romero,&nbsp;Laura J. García-Barrera,&nbsp;Abdú Orduña,&nbsp;Carlos David Ramos,&nbsp;Guillermo Santana Rodríguez,&nbsp;Ateet Dutt","doi":"10.1002/anbr.2024700111","DOIUrl":"https://doi.org/10.1002/anbr.2024700111","url":null,"abstract":"<p><b>Optical-Biosensors</b>\u0000 </p><p>ZnO nanostructure-based biosensors detect enteropathogenic <i>Escherichia coli</i> in real-time (5–10 sec), with optical responses varying by bacterial concentration, distinguishing between viable and lysed cells. More details can be found in article 2400013 by Ateet Dutt and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.2024700111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Additive Manufactured Scaffolds Mimicking the Osteochondral Interface 模拟骨软骨界面的添加剂制造支架的研究进展
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-30 DOI: 10.1002/anbr.202400059
Ivo A. O. Beeren, Pieter J. Dijkstra, Carlos Mota, Sandra Camarero-Espinosa, Matthew B. Baker, Lorenzo Moroni
{"title":"Advances in Additive Manufactured Scaffolds Mimicking the Osteochondral Interface","authors":"Ivo A. O. Beeren,&nbsp;Pieter J. Dijkstra,&nbsp;Carlos Mota,&nbsp;Sandra Camarero-Espinosa,&nbsp;Matthew B. Baker,&nbsp;Lorenzo Moroni","doi":"10.1002/anbr.202400059","DOIUrl":"https://doi.org/10.1002/anbr.202400059","url":null,"abstract":"<p>Architectural, compositional, and mechanical gradients are present in many interfacial tissues in the body. Yet desired for regeneration, the recreation of these complex natural gradients in porous scaffolds remains a challenging task. Additive manufacturing (AM) has been highlighted as a technology to fabricate constructs to regenerate interfacial tissues. Integration of different types of gradients, which can be physical, mechanical, and/or biochemical, shows promise to control cell fate and the regeneration process in a spatial controlled manner. One of the most studied tissue interfaces is the osteochondral unit which connects cartilage to bone. This tissue is often damaged because of trauma or ageing, leading to osteoarthritis; a degenerative disease and a major cause of disability worldwide. Therefore, in view of osteochondral (OC) regeneration, a state-of-the-art overview of current approaches is presented to manufacture gradient scaffolds prepared by AM techniques. The focus is on thermoplastic, hydrogel, and hybrid scaffolds comprising gradients that induce biomimicry by their physical and biological properties. The effect of these different systems on OC tissue formation in-vitro and in-vivo is addressed. Finally, an outlook on current trends of dynamic materials is provided, including proposals on how these materials could improve the mimicry of scaffolds applied for OC regeneration.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Human Amniotic Membrane Suspension Improves the Therapeutic Effect of Mesenchymal Stem Cells on Myocardial Infarction in Rats 新型人羊膜悬浮液改善了间充质干细胞对大鼠心肌梗死的治疗效果
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-30 DOI: 10.1002/anbr.202400084
Zhaoyi Li, Meirong Zhang, Yi Wang, Yijia Li, Yi Zhun Zhu
{"title":"A Novel Human Amniotic Membrane Suspension Improves the Therapeutic Effect of Mesenchymal Stem Cells on Myocardial Infarction in Rats","authors":"Zhaoyi Li,&nbsp;Meirong Zhang,&nbsp;Yi Wang,&nbsp;Yijia Li,&nbsp;Yi Zhun Zhu","doi":"10.1002/anbr.202400084","DOIUrl":"https://doi.org/10.1002/anbr.202400084","url":null,"abstract":"<p>Mesenchymal stem cell (MSC) therapy aids cardiac repair and regeneration, but the low rate of MSC survival and engulfment in the infarcted heart remains a major obstacle for routine clinical application. Here, an injectable suspension of human acellular amniotic membrane (HAAM) that may serve as synergistic cell delivery vehicle for the treatment of myocardial infarction (MI) by improving MSC homing and survival is developed. The results demonstrate that compared with MSC transplantation alone, HAAM-loaded MSCs have higher survival and engraftment rates in infarcted tissue, alleviated hypoxia-induced myocardial damage, achieved higher improvements in cardiac function, promoted angiogenesis, and reduced myocardial fibrosis. In addition, HAAM-loaded MSCs increase N-cadherin levels and thereby enhance the efficacy of MSCs in treating MI. This study provides a new approach for MSC-based cardiac repair and regeneration.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering and Monitoring the Sustained Release of Extracellular Vesicles from Hydrogels for In Vivo Therapeutic Applications 为体内治疗应用设计并监测水凝胶中细胞外囊泡的持续释放
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-30 DOI: 10.1002/anbr.202400073
Selen Uman, Noah Weingarten, Mark Helmers, Amit Iyengar, Karen L. Xu, Kendra Worthington, Danika Meldrum, Jessica Dominic, Sara Guevara-Plunkett, Alexis Schiazza, Pavan Atluri, Jason A. Burdick
{"title":"Engineering and Monitoring the Sustained Release of Extracellular Vesicles from Hydrogels for In Vivo Therapeutic Applications","authors":"Selen Uman,&nbsp;Noah Weingarten,&nbsp;Mark Helmers,&nbsp;Amit Iyengar,&nbsp;Karen L. Xu,&nbsp;Kendra Worthington,&nbsp;Danika Meldrum,&nbsp;Jessica Dominic,&nbsp;Sara Guevara-Plunkett,&nbsp;Alexis Schiazza,&nbsp;Pavan Atluri,&nbsp;Jason A. Burdick","doi":"10.1002/anbr.202400073","DOIUrl":"https://doi.org/10.1002/anbr.202400073","url":null,"abstract":"<p>Extracellular vesicles (EVs) are gaining interest in regenerative medicine and biomaterials have been shown to extend EV bioavailability following delivery. Herein, the labeling of both hydrogels and EVs is reported to better understand hydrogel design for sustained EV release into tissues. Shear-thinning hydrogels are engineered using guest–host (i.e., adamantane–cyclodextrin) modifications to hyaluronic acid (GH), as well as GH hydrogels with the addition of gelatin crosslinked via transglutaminase (GH+Gel) to temporally control hydrogel properties. When labeled with a near-IR dye and injected into rat myocardial tissue, the GH+Gel hydrogel is retained (&gt;14 days) longer than the GH hydrogel alone (≈7 days), likely due to the added gelatin network. To overcome challenges associated with common EV labeling methods, a highly versatile metabolic labeling methodology is utilized via the incorporation of <i>N</i>-azidoacetylmannosamine-tetraacylated during EV synthesis to introduce azide groups that can then be reacted with DBCO dyes. When injected in saline, EVs are cleared within 24 h in hearts; however, hydrogels enhance EV retention, with levels based on hydrogel degradation behavior, namely, &gt;14 days for GH+Gel hydrogel and ≈7 days for GH hydrogel alone. These findings support the use of hydrogels in EV therapies.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laponite Nanoclay-Loaded Microgel Suspensions as Supportive Matrices for Osteogenesis 皂石纳米粘土负载微凝胶悬浮液作为骨形成的支持性基质
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-11 DOI: 10.1002/anbr.202400024
Gagan K. Jalandhra, Tzong-tyng Hung, Kristopher A. Kilian
{"title":"Laponite Nanoclay-Loaded Microgel Suspensions as Supportive Matrices for Osteogenesis","authors":"Gagan K. Jalandhra,&nbsp;Tzong-tyng Hung,&nbsp;Kristopher A. Kilian","doi":"10.1002/anbr.202400024","DOIUrl":"https://doi.org/10.1002/anbr.202400024","url":null,"abstract":"<p>Microscale carriers have emerged as promising materials for nurturing cell growth and as delivery vehicles for regenerative therapies. Carriers based on granular hydrogels have proved advantageous, where “microgels” can be formulated to have a broad range of properties to guide the behavior of adherent cells. Herein, the fabrication of osteogenic microgel matrices through the incorporation of laponite nanoclays is demonstrated. Forming a jammed suspension provides a scaffolding where cells can adhere to the surface of the microgels, with pathways for migration and proliferation fostered by the interstitial volume. By varying the content and type of laponite—RD and XLG—the degree of osteogenesis can be tuned in embedded populations of adipose-derived stem cells. The nano- and microstructured composite materials enhance osteogenesis at the transcript and protein level, leading to increased deposition of bone minerals and an increase in the compressive modulus of the assembled scaffold. Together, these microgel suspensions are promising materials for encouraging osteogenesis with scope for delivery via injection and stabilization to bone-mimetic mechanical properties after matrix deposition.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 10","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioreactors: A Regenerative Approach to Skeletal Muscle Engineering for Repair and Replacement 生物反应器:用于修复和替代的骨骼肌工程再生方法
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-11 DOI: 10.1002/anbr.202400030
Alysha Williamson, Khashayar Khoshmanesh, Elena Pirogova, Peiqi Yang, Finn Snow, Richard Williams, Anita Quigley, Rob M. I. Kapsa
{"title":"Bioreactors: A Regenerative Approach to Skeletal Muscle Engineering for Repair and Replacement","authors":"Alysha Williamson,&nbsp;Khashayar Khoshmanesh,&nbsp;Elena Pirogova,&nbsp;Peiqi Yang,&nbsp;Finn Snow,&nbsp;Richard Williams,&nbsp;Anita Quigley,&nbsp;Rob M. I. Kapsa","doi":"10.1002/anbr.202400030","DOIUrl":"https://doi.org/10.1002/anbr.202400030","url":null,"abstract":"<p>\u0000Engineering skeletal muscle tissue is crucial for the repair and replacement of damaged or dysfunctional muscle. Despite numerous studies emphasizing the significance of skeletal muscle engineering, challenges persist in effectively replacing or repairing large muscle sections in vivo. Bioreactors that facilitate the rapid expansion of muscle precursor cells present a promising solution for addressing extensive muscle loss. Specifically, bioreactors that mimic the native microenvironment of muscle tissue can induce biomimetic stimuli, selectively promoting the expansion of muscle precursors with optimal myo-regenerative potential. In this review, the advancements made in utilizing bioreactors to enhance the myo-regenerative phenotype of cells for skeletal muscle engineering are highlighted.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 10","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring of Electrophysiological Functions in Brain-on-a-Chip and Brain Organoids 监测脑芯片和脑器官组织的电生理功能
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-09 DOI: 10.1002/anbr.202470091
Jiyoung Song, Hoon Eui Jeong, Andrew Choi, Hong Nam Kim
{"title":"Monitoring of Electrophysiological Functions in Brain-on-a-Chip and Brain Organoids","authors":"Jiyoung Song,&nbsp;Hoon Eui Jeong,&nbsp;Andrew Choi,&nbsp;Hong Nam Kim","doi":"10.1002/anbr.202470091","DOIUrl":"https://doi.org/10.1002/anbr.202470091","url":null,"abstract":"<p><b>Electrophysiology Measurement</b>\u0000 </p><p>Human avatars like brain-on-a-chip and brain organoids use human-derived cells to replicate brain physiology. This review summarizes the latest methodologies for assessing the electrophysiology of various cell types within brain-on-a-chip and brain organoid models. More details can be found in article 2400052 by Jiyoung Song, Hoon Eui Jeong, Andrew Choi, and Hong Nam Kim.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 9","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergetic Enhancing Effects between Platinum Nanosensitizers and Clinically Approved Stabilizing Ligands in Proton Therapy, Causing High-Yield Double-Strand Breaks of Plasmid DNA at Relevant Dose 铂纳米敏化剂与临床批准的稳定配体在质子治疗中的协同增强效应,在相关剂量下导致质粒 DNA 的高产率双链断裂
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-06 DOI: 10.1002/anbr.202400023
Sandra Zwiehoff, Astrid Hensel, Ramin Rishmawi, Parisa Shakibaei, Carina Behrends, Katrin Hommel, Christian Bäumer, Shirley Karin Knauer, Beate Timmermann, Christoph Rehbock, Stephan Barcikowski
{"title":"Synergetic Enhancing Effects between Platinum Nanosensitizers and Clinically Approved Stabilizing Ligands in Proton Therapy, Causing High-Yield Double-Strand Breaks of Plasmid DNA at Relevant Dose","authors":"Sandra Zwiehoff,&nbsp;Astrid Hensel,&nbsp;Ramin Rishmawi,&nbsp;Parisa Shakibaei,&nbsp;Carina Behrends,&nbsp;Katrin Hommel,&nbsp;Christian Bäumer,&nbsp;Shirley Karin Knauer,&nbsp;Beate Timmermann,&nbsp;Christoph Rehbock,&nbsp;Stephan Barcikowski","doi":"10.1002/anbr.202400023","DOIUrl":"https://doi.org/10.1002/anbr.202400023","url":null,"abstract":"<p>Proton therapy is used to eradicate tumors in sensitive areas by targeted delivery of energy. Its effectiveness can be amplified using nanoparticles (NPs) as sensitizers, due to the production of reactive oxygen species at the NP's catalytically active surface, causing the cleavage of DNA. However, the impact of stabilizing macromolecular ligands capping the particles, needed for nanosensitizer dispersion in physiological fluids, is underexplored. Herein, ligand-free colloidal platinum NPs (PtNPs) fabricated by scalable laser synthesis in liquids are used, which allows studying particle and ligand effects separately. PtNPs are incubated with stabilizing concentrations of the clinically approved ligands albumin, Tween, and polyethylene glycol, and irradiated with proton beams at clinically relevant doses (2 and 5 Gy). At these doses, plasmid DNA cleavage larger than 55% of clustered DNA damage is achieved. Bovine serum albumin, Tween, and polyethylene glycol on the NP surface work as double-strand breaks (DSB) enhancers and synergetic effects occur even at low and clinically relevant particle concentrations and irradiation doses. Here, DSB enhancement by ligand-capped PtNP even exceeds the sum of the individual ligand and particle effects. The presented fundamental correlations provide selection rules for nanosensitizer design in proton therapy.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor 利用 1DZnO 光学纳米生物传感器进行实时纳米级细菌检测
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-06 DOI: 10.1002/anbr.202400013
Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt
{"title":"Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor","authors":"Rafael A. Salinas,&nbsp;Shirlley E. Martínez Tolibia,&nbsp;Andrés Galdámez-Martínez,&nbsp;Josué E. Romero,&nbsp;Laura J. García-Barrera,&nbsp;Abdú Orduña,&nbsp;Carlos David Ramos,&nbsp;Guillermo Santana Rodríguez,&nbsp;Ateet Dutt","doi":"10.1002/anbr.202400013","DOIUrl":"https://doi.org/10.1002/anbr.202400013","url":null,"abstract":"<p>One-dimensional zinc oxide nanomaterials (1DZnO) have emerged as promising, cost-effective nanoplatforms with adjustable properties suitable for electrochemical and optical biosensing applications. In this work, modifications in the inherent photoluminescent response of 1DZnO are harnessed to develop a novel immunosensor tailored for detecting enteropathogenic <i>Escherichia coli</i>. This nanobiosensor demonstrates a modulation in photoluminescence signal, effectively responsive to analyte concentrations ranging from 1 × 10<sup>2</sup> to 1 × 10<sup>8</sup> CFU mL<sup>−1</sup>, with direct visualization of targeted bacterial cells over 1DZnO structures through scanning electron microscopy. The conceptualization of this nanobiosensor is focused on a real-time contact strategy that can significantly reduce processing and response times for pathogen detection, prospected for emergency scenarios. With this aim, the detection process unfolds in real time, with a mere 5–10 s interaction time, corroborated by the standard polymerase chain reaction approach. This synergistic validation underscores the reliability and precision of the developed biosensor. Notably, the utility of 1DZnO nanoplatforms extends beyond the realm of enteropathogenic <i>E. coli</i>, as the biosensing performance exhibited here holds promise for analogous applications involving other medically pertinent pathogens. This study paves the way for the broader implementation of 1DZnO-based biosensors in medical diagnostics, offering rapid, sensitive, and real-time detection capabilities.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phototactic Biohybrid Microrobot Using Peptide Nanotubes-Coated Microalgae for pH-Responsive Active Drug Delivery 利用肽纳米管包覆微藻的光触媒生物杂交微型机器人实现 pH 值响应型活性药物递送
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-03 DOI: 10.1002/anbr.202400042
Laura Ha, Hyunsik Choi, Ashmeet Singh, Bolam Kim, Byung-Kwon Kaang, You-Kwan Oh, Sei Kwang Hahn, Dong-Pyo Kim
{"title":"Phototactic Biohybrid Microrobot Using Peptide Nanotubes-Coated Microalgae for pH-Responsive Active Drug Delivery","authors":"Laura Ha,&nbsp;Hyunsik Choi,&nbsp;Ashmeet Singh,&nbsp;Bolam Kim,&nbsp;Byung-Kwon Kaang,&nbsp;You-Kwan Oh,&nbsp;Sei Kwang Hahn,&nbsp;Dong-Pyo Kim","doi":"10.1002/anbr.202400042","DOIUrl":"https://doi.org/10.1002/anbr.202400042","url":null,"abstract":"<p>Despite the recent wide investigation on active cancer drug delivery, there are still strong medical unmet needs for active tumor-environment responsive cancer drug delivery in terms of spatiotemporal control. Herein, a biohybrid system of pH-responsive peptide nanotubes (PNTs)-coated microalgae for active cancer drug delivery in response to the tumor-environment is developed. The amphiphilic PNTs are effectively used to encapsulate cancer drugs and coat the living microalgae of <i>C. reinhardtii</i> by electrostatic interactions. The drug-loaded PNTs-based biohybrid microalgae maintain agile movement with phototaxis behavior. After in vitro characterization and cytotoxicity assessment, it is shown that the biohybrid microalgae could be phototactically localized to the cancer cells and pH-responsively disassembled to release cancer drugs in a controlled manner. Finally, with the encapsulation of paclitaxel, the statistically significant suppression of tumor growth in xenograft tumor model animals is successfully demonstrated. Taken together, the feasibility of the multifunctional microrobotic platform for advanced cancer therapy is confirmed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 10","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信