{"title":"Characterization of a Bioprinted Anticancer Cell Therapy System Generated with Continuous Liquid Interface Production","authors":"Lauren Kass, Ike Keku, Yu Zhang, Justin Forbes, Morrent Thang, Jillian Perry, Shawn Hingtgen","doi":"10.1002/anbr.202500062","DOIUrl":null,"url":null,"abstract":"<p>Anticancer cell therapies have remarkable clinical potential yet fail to reach the clinic due to poor delivery. 3D bioprinting (3DBP) can be leveraged for generating cell therapy delivery devices, where the biomaterial system acts as a protective matrix to stabilize cells after implantation. Continuous liquid interface production (CLIP), an additive manufacturing technology, has several unique features that make it a suitable platform for 3DBP of cell-laden scaffolds. However, the feasibility CLIP bioprinting and efficacy of CLIP-bioprinted cell/matrix therapies have not yet been explored. In this work, we demonstrate the utility of CLIP for cell therapy 3DBP with a simple gelatin methacrylate-based resin and anticancer drug-secreting fibroblasts as a model therapy against recurrent glioblastoma. We demonstrate that CLIP enables rapid, consistent production of cell-laden scaffolds, and cells maintain their viability and tumor-killing efficacy in vitro post-printing. Importantly, we proved that bioprinted cells survive longer in vivo than directly injected cells, and that this effect may correspond to better survival outcomes in a mouse model of glioblastoma resection. This study is the first to utilize CLIP for 3DBP of composite devices containing anticancer cell therapies, providing a crucial foundation for developing highly refined cell therapy delivery devices in the future.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202500062","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202500062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anticancer cell therapies have remarkable clinical potential yet fail to reach the clinic due to poor delivery. 3D bioprinting (3DBP) can be leveraged for generating cell therapy delivery devices, where the biomaterial system acts as a protective matrix to stabilize cells after implantation. Continuous liquid interface production (CLIP), an additive manufacturing technology, has several unique features that make it a suitable platform for 3DBP of cell-laden scaffolds. However, the feasibility CLIP bioprinting and efficacy of CLIP-bioprinted cell/matrix therapies have not yet been explored. In this work, we demonstrate the utility of CLIP for cell therapy 3DBP with a simple gelatin methacrylate-based resin and anticancer drug-secreting fibroblasts as a model therapy against recurrent glioblastoma. We demonstrate that CLIP enables rapid, consistent production of cell-laden scaffolds, and cells maintain their viability and tumor-killing efficacy in vitro post-printing. Importantly, we proved that bioprinted cells survive longer in vivo than directly injected cells, and that this effect may correspond to better survival outcomes in a mouse model of glioblastoma resection. This study is the first to utilize CLIP for 3DBP of composite devices containing anticancer cell therapies, providing a crucial foundation for developing highly refined cell therapy delivery devices in the future.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.