Praveesuda L. Michael, Yuen Ting Lam, Timothy C. Mitchell, Miguel Santos, Alex H. P. Chan, Xinying Liu, Angus J. Grant, Matthew J. Moore, David F. Fletcher, Richard P. Tan, Steven G. Wise
{"title":"Harnessing Physiological Shear Stress in a Perfusion Bioreactor for Enhanced Endothelialization of Small-Diameter Vascular Grafts","authors":"Praveesuda L. Michael, Yuen Ting Lam, Timothy C. Mitchell, Miguel Santos, Alex H. P. Chan, Xinying Liu, Angus J. Grant, Matthew J. Moore, David F. Fletcher, Richard P. Tan, Steven G. Wise","doi":"10.1002/anbr.202500025","DOIUrl":null,"url":null,"abstract":"<p>This study presents a versatile perfusion bioreactor system designed to evaluate endothelialization on electrospun polycaprolactone (PCL)–gelatin vascular grafts under controlled flow conditions that mimic physiological and pathological shear stress. The bioreactor enables direct assessment of endothelial cell behavior on 3D graft structures, providing a more physiologically relevant platform compared to traditional static cultures. Electrospun PCL–gelatin grafts demonstrate uniform endothelial cell coverage when exposed to physiological shear stress (>10 dyn cm<sup>−2</sup>), with cells displaying alignment in the direction of flow. Under these conditions, endothelial cells upregulate endothelial nitric oxide synthase and platelet endothelial cell adhesion molecule-1, markers associated with vascular homeostasis, anti-inflammatory activity, and enhanced endothelial migration. In contrast, grafts subjected to pathological shear stress (<5 dyn cm<sup>−2</sup>) exhibit increased expression of intercellular adhesion molecule-1, promoting monocyte adhesion and a proinflammatory response. These findings highlight the importance of physiological flow dynamics in regulating endothelial function and demonstrate the value of this bioreactor system as a platform prior to preclinical evaluation of vascular grafts. By providing a more accurate in vitro model, this system may accelerate the development of bioengineered vascular grafts with improved clinical outcomes.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202500025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202500025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a versatile perfusion bioreactor system designed to evaluate endothelialization on electrospun polycaprolactone (PCL)–gelatin vascular grafts under controlled flow conditions that mimic physiological and pathological shear stress. The bioreactor enables direct assessment of endothelial cell behavior on 3D graft structures, providing a more physiologically relevant platform compared to traditional static cultures. Electrospun PCL–gelatin grafts demonstrate uniform endothelial cell coverage when exposed to physiological shear stress (>10 dyn cm−2), with cells displaying alignment in the direction of flow. Under these conditions, endothelial cells upregulate endothelial nitric oxide synthase and platelet endothelial cell adhesion molecule-1, markers associated with vascular homeostasis, anti-inflammatory activity, and enhanced endothelial migration. In contrast, grafts subjected to pathological shear stress (<5 dyn cm−2) exhibit increased expression of intercellular adhesion molecule-1, promoting monocyte adhesion and a proinflammatory response. These findings highlight the importance of physiological flow dynamics in regulating endothelial function and demonstrate the value of this bioreactor system as a platform prior to preclinical evaluation of vascular grafts. By providing a more accurate in vitro model, this system may accelerate the development of bioengineered vascular grafts with improved clinical outcomes.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.