Gagan K. Jalandhra, Tzong-tyng Hung, Kristopher A. Kilian
{"title":"Laponite Nanoclay-Loaded Microgel Suspensions as Supportive Matrices for Osteogenesis","authors":"Gagan K. Jalandhra, Tzong-tyng Hung, Kristopher A. Kilian","doi":"10.1002/anbr.202400024","DOIUrl":"https://doi.org/10.1002/anbr.202400024","url":null,"abstract":"<p>Microscale carriers have emerged as promising materials for nurturing cell growth and as delivery vehicles for regenerative therapies. Carriers based on granular hydrogels have proved advantageous, where “microgels” can be formulated to have a broad range of properties to guide the behavior of adherent cells. Herein, the fabrication of osteogenic microgel matrices through the incorporation of laponite nanoclays is demonstrated. Forming a jammed suspension provides a scaffolding where cells can adhere to the surface of the microgels, with pathways for migration and proliferation fostered by the interstitial volume. By varying the content and type of laponite—RD and XLG—the degree of osteogenesis can be tuned in embedded populations of adipose-derived stem cells. The nano- and microstructured composite materials enhance osteogenesis at the transcript and protein level, leading to increased deposition of bone minerals and an increase in the compressive modulus of the assembled scaffold. Together, these microgel suspensions are promising materials for encouraging osteogenesis with scope for delivery via injection and stabilization to bone-mimetic mechanical properties after matrix deposition.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 10","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alysha Williamson, Khashayar Khoshmanesh, Elena Pirogova, Peiqi Yang, Finn Snow, Richard Williams, Anita Quigley, Rob M. I. Kapsa
{"title":"Bioreactors: A Regenerative Approach to Skeletal Muscle Engineering for Repair and Replacement","authors":"Alysha Williamson, Khashayar Khoshmanesh, Elena Pirogova, Peiqi Yang, Finn Snow, Richard Williams, Anita Quigley, Rob M. I. Kapsa","doi":"10.1002/anbr.202400030","DOIUrl":"https://doi.org/10.1002/anbr.202400030","url":null,"abstract":"<p>\u0000Engineering skeletal muscle tissue is crucial for the repair and replacement of damaged or dysfunctional muscle. Despite numerous studies emphasizing the significance of skeletal muscle engineering, challenges persist in effectively replacing or repairing large muscle sections in vivo. Bioreactors that facilitate the rapid expansion of muscle precursor cells present a promising solution for addressing extensive muscle loss. Specifically, bioreactors that mimic the native microenvironment of muscle tissue can induce biomimetic stimuli, selectively promoting the expansion of muscle precursors with optimal myo-regenerative potential. In this review, the advancements made in utilizing bioreactors to enhance the myo-regenerative phenotype of cells for skeletal muscle engineering are highlighted.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 10","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiyoung Song, Hoon Eui Jeong, Andrew Choi, Hong Nam Kim
{"title":"Monitoring of Electrophysiological Functions in Brain-on-a-Chip and Brain Organoids","authors":"Jiyoung Song, Hoon Eui Jeong, Andrew Choi, Hong Nam Kim","doi":"10.1002/anbr.202470091","DOIUrl":"https://doi.org/10.1002/anbr.202470091","url":null,"abstract":"<p><b>Electrophysiology Measurement</b>\u0000 </p><p>Human avatars like brain-on-a-chip and brain organoids use human-derived cells to replicate brain physiology. This review summarizes the latest methodologies for assessing the electrophysiology of various cell types within brain-on-a-chip and brain organoid models. More details can be found in article 2400052 by Jiyoung Song, Hoon Eui Jeong, Andrew Choi, and Hong Nam Kim.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 9","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Zwiehoff, Astrid Hensel, Ramin Rishmawi, Parisa Shakibaei, Carina Behrends, Katrin Hommel, Christian Bäumer, Shirley Karin Knauer, Beate Timmermann, Christoph Rehbock, Stephan Barcikowski
{"title":"Synergetic Enhancing Effects between Platinum Nanosensitizers and Clinically Approved Stabilizing Ligands in Proton Therapy, Causing High-Yield Double-Strand Breaks of Plasmid DNA at Relevant Dose","authors":"Sandra Zwiehoff, Astrid Hensel, Ramin Rishmawi, Parisa Shakibaei, Carina Behrends, Katrin Hommel, Christian Bäumer, Shirley Karin Knauer, Beate Timmermann, Christoph Rehbock, Stephan Barcikowski","doi":"10.1002/anbr.202400023","DOIUrl":"https://doi.org/10.1002/anbr.202400023","url":null,"abstract":"<p>Proton therapy is used to eradicate tumors in sensitive areas by targeted delivery of energy. Its effectiveness can be amplified using nanoparticles (NPs) as sensitizers, due to the production of reactive oxygen species at the NP's catalytically active surface, causing the cleavage of DNA. However, the impact of stabilizing macromolecular ligands capping the particles, needed for nanosensitizer dispersion in physiological fluids, is underexplored. Herein, ligand-free colloidal platinum NPs (PtNPs) fabricated by scalable laser synthesis in liquids are used, which allows studying particle and ligand effects separately. PtNPs are incubated with stabilizing concentrations of the clinically approved ligands albumin, Tween, and polyethylene glycol, and irradiated with proton beams at clinically relevant doses (2 and 5 Gy). At these doses, plasmid DNA cleavage larger than 55% of clustered DNA damage is achieved. Bovine serum albumin, Tween, and polyethylene glycol on the NP surface work as double-strand breaks (DSB) enhancers and synergetic effects occur even at low and clinically relevant particle concentrations and irradiation doses. Here, DSB enhancement by ligand-capped PtNP even exceeds the sum of the individual ligand and particle effects. The presented fundamental correlations provide selection rules for nanosensitizer design in proton therapy.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt
{"title":"Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor","authors":"Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt","doi":"10.1002/anbr.202400013","DOIUrl":"https://doi.org/10.1002/anbr.202400013","url":null,"abstract":"<p>One-dimensional zinc oxide nanomaterials (1DZnO) have emerged as promising, cost-effective nanoplatforms with adjustable properties suitable for electrochemical and optical biosensing applications. In this work, modifications in the inherent photoluminescent response of 1DZnO are harnessed to develop a novel immunosensor tailored for detecting enteropathogenic <i>Escherichia coli</i>. This nanobiosensor demonstrates a modulation in photoluminescence signal, effectively responsive to analyte concentrations ranging from 1 × 10<sup>2</sup> to 1 × 10<sup>8</sup> CFU mL<sup>−1</sup>, with direct visualization of targeted bacterial cells over 1DZnO structures through scanning electron microscopy. The conceptualization of this nanobiosensor is focused on a real-time contact strategy that can significantly reduce processing and response times for pathogen detection, prospected for emergency scenarios. With this aim, the detection process unfolds in real time, with a mere 5–10 s interaction time, corroborated by the standard polymerase chain reaction approach. This synergistic validation underscores the reliability and precision of the developed biosensor. Notably, the utility of 1DZnO nanoplatforms extends beyond the realm of enteropathogenic <i>E. coli</i>, as the biosensing performance exhibited here holds promise for analogous applications involving other medically pertinent pathogens. This study paves the way for the broader implementation of 1DZnO-based biosensors in medical diagnostics, offering rapid, sensitive, and real-time detection capabilities.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Ha, Hyunsik Choi, Ashmeet Singh, Bolam Kim, Byung-Kwon Kaang, You-Kwan Oh, Sei Kwang Hahn, Dong-Pyo Kim
{"title":"Phototactic Biohybrid Microrobot Using Peptide Nanotubes-Coated Microalgae for pH-Responsive Active Drug Delivery","authors":"Laura Ha, Hyunsik Choi, Ashmeet Singh, Bolam Kim, Byung-Kwon Kaang, You-Kwan Oh, Sei Kwang Hahn, Dong-Pyo Kim","doi":"10.1002/anbr.202400042","DOIUrl":"https://doi.org/10.1002/anbr.202400042","url":null,"abstract":"<p>Despite the recent wide investigation on active cancer drug delivery, there are still strong medical unmet needs for active tumor-environment responsive cancer drug delivery in terms of spatiotemporal control. Herein, a biohybrid system of pH-responsive peptide nanotubes (PNTs)-coated microalgae for active cancer drug delivery in response to the tumor-environment is developed. The amphiphilic PNTs are effectively used to encapsulate cancer drugs and coat the living microalgae of <i>C. reinhardtii</i> by electrostatic interactions. The drug-loaded PNTs-based biohybrid microalgae maintain agile movement with phototaxis behavior. After in vitro characterization and cytotoxicity assessment, it is shown that the biohybrid microalgae could be phototactically localized to the cancer cells and pH-responsively disassembled to release cancer drugs in a controlled manner. Finally, with the encapsulation of paclitaxel, the statistically significant suppression of tumor growth in xenograft tumor model animals is successfully demonstrated. Taken together, the feasibility of the multifunctional microrobotic platform for advanced cancer therapy is confirmed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 10","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergio E. Moya, Raquel Ruiz Hernández, Paula C. Angelomé
{"title":"Degradation of Mesoporous Silica Materials in Biological Milieu: The Gateway for Therapeutic Applications","authors":"Sergio E. Moya, Raquel Ruiz Hernández, Paula C. Angelomé","doi":"10.1002/anbr.202400005","DOIUrl":"https://doi.org/10.1002/anbr.202400005","url":null,"abstract":"<p>Since early developments in the field of mesoporous materials, mesoporous silica has attracted large interest in drug delivery, as they display an ordered array of pores with diameters ranging from 2 to 50 nm, which can be loaded with drugs. Mesoporous silica dissolves at physiological pH, triggering the release of loaded drugs. Several studies have focused on determining the key factors that determine the biodistribution, biocompatibility, and toxicity both in vitro or in vivo. However, in vivo studies focused on the degradation of mesoporous silica materials are very scarce, despite its relevance for drug release. In this perspective, recent works addressing mesoporous materials degradation in the context of drug delivery are discussed, first from a physicochemical point of view, and secondly in in vivo settings, in animal models that are the closest conditions to the encountered when the mesoporous materials are administered to humans. Finally, further discussion about the future directions in the design of mesoporous nanomaterials for therapy and for the study of their biological fate are presented.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 10","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashwin A. Bale, Swaroop Thammineni, Rohit Bhargava, Brendan Harley
{"title":"Hyaluronic Acid Influences Amino Acid Metabolism via Differential L-Type Amino Acid Transporter 1 Expression in the U87-Malignant Glioma Cell Line","authors":"Ashwin A. Bale, Swaroop Thammineni, Rohit Bhargava, Brendan Harley","doi":"10.1002/anbr.202400107","DOIUrl":"https://doi.org/10.1002/anbr.202400107","url":null,"abstract":"<p>The glioblastoma (GBM) tumor microenvironment is heterogeneous, complex, and being increasingly understood as a significant contributor to tumor progression. In brain tumors, the extracellular matrix contains a large concentration of hyaluronic acid (HA) that makes it important to study its role in cancer progression. In particular, abnormal accumulation of HA is observed in gliomas and is often associated with poor prognosis. In addition, HA is a polymer and its molecular weight (MW) distribution may influence tumor cell activity. Herein, the influence of the MW of HA on tumor cell metabolism is evaluated. A 2D cell culture approach is used to expose the U87-MG (medium glucose [MG]) cell line to different HA MWs (10, 60, and 500 kDa) and glucose concentrations (0, 5.5, and 25 m<span>m</span>). Notably, it is found that HA influences GBM amino acid metabolism via reduction in LAT1 transporter protein expression. Also an influence on mitochondrial respiration levels and a difference in the accumulation of some key products of cell metabolic activity (lactic acid, glutamic acid, and succinic acid) are reported. Overall, in these results, it is indicated that HA MW can influence GBM metabolic state, with implications for cell invasion and tumor progression.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Progress in the Development of Flexible Wearable Electrodes for Electrocardiogram Monitoring During Exercise","authors":"Tae Woog Kang, Jimin Lee, Youngjin Kwon, Yoon Jae Lee, Woon-Hong Yeo","doi":"10.1002/anbr.202470081","DOIUrl":"https://doi.org/10.1002/anbr.202470081","url":null,"abstract":"<p><b>Flexible Wearable Electrocardiogram Devices</b>\u0000 </p><p>In article 2300169, Woon-Hong Yeo and co-workers discuss the key properties and requirements of flexible wearable electrocardiogram devices for early diagnosis of heart dysfunction during dynamic motions, including exercise.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DNA Dissipative System for Controlled Release of Immunostimulatory CpG Oligodeoxynucleotides","authors":"Aman Ishaqat, Xiaofeng Zhang, Andreas Herrmann","doi":"10.1002/anbr.202400082","DOIUrl":"https://doi.org/10.1002/anbr.202400082","url":null,"abstract":"<p>Herein, a dissipative system tailored for the controlled loading and release of CpG oligodeoxynucleotides (CpG ODNs), known for their pharmacological immunostimulatory properties, is reported. The approach involves multiple cycles of deactivation and activation of the CpG ODNs via its hybridization with a complementary fuel strand, followed by its selective release mediated by the enzymatic activity of T7 exonuclease. The autonomous and temporal behavior of this dissipative system can be tuned by three factors: the design of the fuel strand and its concentration that governs the kinetics of the forward hybridization reaction, as well as the concentration of T7 exonuclease, which regulates the backward energy dissipation reaction. Furthermore, the enzyme's tolerance toward waste accumulation is demonstrated, and the system's robust performance when utilizing various fuel strands in alternating fashion is showcased. The findings underscore the potential of this approach for precise and programmable delivery of therapeutic nucleic acids in multiple cycles, with implications for enhancing immunotherapeutic strategies in which controlled kinetics of the nucleic acid is highly desired.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}