Advanced Nanobiomed Research最新文献

筛选
英文 中文
Eggshell-Based Unconventional Biomaterials for Medical Applications 用于医疗应用的蛋壳基非常规生物材料
IF 4
Advanced Nanobiomed Research Pub Date : 2024-11-13 DOI: 10.1002/anbr.202400120
Maria Eduarda Torres Gouveia, Charles Milhans, Mert Gezek, Gulden Camci-Unal
{"title":"Eggshell-Based Unconventional Biomaterials for Medical Applications","authors":"Maria Eduarda Torres Gouveia,&nbsp;Charles Milhans,&nbsp;Mert Gezek,&nbsp;Gulden Camci-Unal","doi":"10.1002/anbr.202400120","DOIUrl":"https://doi.org/10.1002/anbr.202400120","url":null,"abstract":"<p>Eggshells are one of the most abundant byproducts of food processing waste. Each discarded eggshell represents a missed opportunity to convert a no-cost waste material into a valuable product. Beyond their economic practicality and widespread availability, eggshells possess unique biological and chemical properties that support cell differentiation. Their composition includes biologically active compounds, essential trace elements, and collagenous and noncollagenous elements, mimicking the components of bones, teeth, and skin. Additionally, eggshells serve as a suitable precursor for synthesizing hydroxyapatite, calcium carbonate (CaCO<sub>3</sub>), and <i>β</i>-tricalcium phosphate. Eggshells can be utilized on their own or as derived materials to produce regenerative biocomposite scaffolds for tissue engineering. These scaffolds often exhibit high porosity, excellent biocompatibility, degradability, and mechanical properties. Eggshells and their derivatives have also been employed as carriers for targeted drug delivery systems and in electrochemical biosensors. Eggshells serve as a versatile biomaterial, adept at not only addressing practical gaps but also bridging the divide between sophistication and ease of production. In this review, the chemical composition of eggshells and their numerous applications in hard and soft tissue regeneration, biomolecule delivery, and biosensor development are discussed highlighting their innovative and unconventional use as a natural biomaterial providing solutions for unmet clinical needs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor 利用 1DZnO 光学纳米生物传感器进行实时纳米级细菌检测
IF 4
Advanced Nanobiomed Research Pub Date : 2024-11-07 DOI: 10.1002/anbr.2024700111
Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt
{"title":"Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor","authors":"Rafael A. Salinas,&nbsp;Shirlley E. Martínez Tolibia,&nbsp;Andrés Galdámez-Martínez,&nbsp;Josué E. Romero,&nbsp;Laura J. García-Barrera,&nbsp;Abdú Orduña,&nbsp;Carlos David Ramos,&nbsp;Guillermo Santana Rodríguez,&nbsp;Ateet Dutt","doi":"10.1002/anbr.2024700111","DOIUrl":"https://doi.org/10.1002/anbr.2024700111","url":null,"abstract":"<p><b>Optical-Biosensors</b>\u0000 </p><p>ZnO nanostructure-based biosensors detect enteropathogenic <i>Escherichia coli</i> in real-time (5–10 sec), with optical responses varying by bacterial concentration, distinguishing between viable and lysed cells. More details can be found in article 2400013 by Ateet Dutt and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.2024700111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application 生物医学研究的纳米建筑学:生物活性应用的后纳米技术材料方法
IF 4
Advanced Nanobiomed Research Pub Date : 2024-11-01 DOI: 10.1002/anbr.202400136
Katsuhiko Ariga
{"title":"Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application","authors":"Katsuhiko Ariga","doi":"10.1002/anbr.202400136","DOIUrl":"https://doi.org/10.1002/anbr.202400136","url":null,"abstract":"<p>Nanoarchitectonics, as a post-nanotechnology concept, represents a methodology for the construction of functional materials employing atoms, molecules, and nanomaterials as essential components. The overarching objective of nanoarchitectonics is to develop functional systems comprising multiple functional units assembled in a hierarchical manner, as observed in biological systems. Nevertheless, the construction of such functional systems is a challenging endeavor. It would be prudent, therefore, to initially focus on the development of functional materials that interact with the complex functional structures of living organisms. Accordingly, this review article addresses the topic of nanoarchitecture as it pertains to biomedical applications. This article examines the current trends in research and presents examples of studies that support the concept of nanoarchitectonics and its applications in biomedical fields. The examples presented are as follows: i) molecular nanoarchitectonics developments, which are mainly based on molecular design and assembly; ii) material nanoarchitectonics examples, which are mainly based on material design using nanomaterials as components; and iii) biomedical applications with porous materials, which will be summarized under the heading of pore-engineered nanoarchitectonics due to their special structure. Finally, the review provides an overview of these examples and discusses future prospects.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoporous Biosilica Beads for Controlled Selenium Nanoparticle Delivery from Collagen-Chitosan Scaffolds: Promoting Bone Formation and Suppressing Prostate Cancer Growth 介孔生物硅珠用于控制胶原-壳聚糖支架硒纳米颗粒的递送:促进骨形成和抑制前列腺癌生长
IF 4
Advanced Nanobiomed Research Pub Date : 2024-10-28 DOI: 10.1002/anbr.202400110
Kulwinder Kaur, Lucie Falgous, Nezar Kamal, David Caffrey, Brenton L. Cavanagh, Behlul Koc-Bilican, Murat Kaya, Igor Shvets, Caroline M. Curtin, Ciara M. Murphy
{"title":"Mesoporous Biosilica Beads for Controlled Selenium Nanoparticle Delivery from Collagen-Chitosan Scaffolds: Promoting Bone Formation and Suppressing Prostate Cancer Growth","authors":"Kulwinder Kaur,&nbsp;Lucie Falgous,&nbsp;Nezar Kamal,&nbsp;David Caffrey,&nbsp;Brenton L. Cavanagh,&nbsp;Behlul Koc-Bilican,&nbsp;Murat Kaya,&nbsp;Igor Shvets,&nbsp;Caroline M. Curtin,&nbsp;Ciara M. Murphy","doi":"10.1002/anbr.202400110","DOIUrl":"https://doi.org/10.1002/anbr.202400110","url":null,"abstract":"<p>The controlled delivery of selenium nanoparticles (Se-NPs) is promising for bone cancer treatment due to their dual benefits in bone regeneration and tumor inhibition, yet achieving an optimal dosing regimen remains challenging. Natural mesoporous biosilica (BS) beads have shown promise for drug delivery due to their microporous structure. This study explores incorporating BS beads into collagen-chitosan (Coll-CS) scaffolds, known for bone repair, to control Se-NP delivery. Two approaches are compared: loading Se-NPs into BS beads before integrating them into Coll-CS scaffolds versus directly loading Se-NPs into Coll-CS scaffolds. The scaffold properties, Se release kinetics, cytocompatibility, and effects on mesenchymal stem cells (MSCs) and prostate cancer cells (LNCaP) are evaluated. BS bead-loaded scaffolds provide controlled Se-NP release and enhanced mechanical properties compared to directly loaded scaffolds. Higher Se-NP concentrations in BS-loaded scaffolds effectively promote MSC osteogenic differentiation and mineralisation while inhibiting LNCaP cell viability. In contrast, low Se-NP concentrations not only induce early osteogenic differentiation but also promote cancer cell proliferation, underscoring the need for optimal Se-NP concentration and release. These findings suggest that BS bead-loaded Coll-CS scaffolds are a promising strategy for controlled Se-NP delivery, addressing the dual challenges of bone formation and cancer recurrence prevention in bone cancer treatment.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Nanomaterials for Osteoarthritis Treatment: Targeting Cartilage, Subchondral Bone, and Synovium 用于骨关节炎治疗的仿生纳米材料:针对软骨、软骨下骨和滑膜
IF 4
Advanced Nanobiomed Research Pub Date : 2024-10-24 DOI: 10.1002/anbr.202400029
Xiaoshan Gong, Hao Tang, Jingjin Dai, Guoqiang Wang, Shiwu Dong
{"title":"Biomimetic Nanomaterials for Osteoarthritis Treatment: Targeting Cartilage, Subchondral Bone, and Synovium","authors":"Xiaoshan Gong,&nbsp;Hao Tang,&nbsp;Jingjin Dai,&nbsp;Guoqiang Wang,&nbsp;Shiwu Dong","doi":"10.1002/anbr.202400029","DOIUrl":"https://doi.org/10.1002/anbr.202400029","url":null,"abstract":"<p>Osteoarthritis (OA) is characterized mainly by articular cartilage loss, subchondral osteosclerosis, and chronic inflammation and involves multiple types of cellular dysfunction and tissue lesions. The rapid development of nanotechnology and materials science has contributed to the application of biomimetic nanomaterials in the biomedical field. By optimizing the composition, hardness, porosity, and drug loading of biomimetic nanomaterials, their unique physicochemical properties drive potential applications in bone repair. This article reviews the present understanding of the physiopathological mechanism and clinical treatment drawbacks of OA and summarizes various types of biomimetic nanomaterials for OA that target lesion sites, such as cartilage, subchondral bone, and synovium, through simulation of the physiological structure and microenvironment. Eventually, the challenges and prospects for the clinical translation of biomimetic nanomaterials are further discussed, with the goal of accessing an effective approach for OA treatment.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrodynamic Cavitation-Induced Thrombolysis on a Clot-on-a-Chip Platform
IF 4
Advanced Nanobiomed Research Pub Date : 2024-10-18 DOI: 10.1002/anbr.202400112
Beyzanur Ozogul, Unal Akar, Rabia Mercimek, Farzad Rokhsar Talabazar, Seyedali Seyedmirzaei Sarraf, Araz Sheibani Aghdam, Ali Ansari Hamedani, Luis Guillermo Villanueva, Dmitry Grishenkov, Ehsan Amani, Tugrul Elverdi, Morteza Ghorbani, Ali Koşar
{"title":"Hydrodynamic Cavitation-Induced Thrombolysis on a Clot-on-a-Chip Platform","authors":"Beyzanur Ozogul,&nbsp;Unal Akar,&nbsp;Rabia Mercimek,&nbsp;Farzad Rokhsar Talabazar,&nbsp;Seyedali Seyedmirzaei Sarraf,&nbsp;Araz Sheibani Aghdam,&nbsp;Ali Ansari Hamedani,&nbsp;Luis Guillermo Villanueva,&nbsp;Dmitry Grishenkov,&nbsp;Ehsan Amani,&nbsp;Tugrul Elverdi,&nbsp;Morteza Ghorbani,&nbsp;Ali Koşar","doi":"10.1002/anbr.202400112","DOIUrl":"https://doi.org/10.1002/anbr.202400112","url":null,"abstract":"<p>\u0000Complications from thrombosis constitute a massive global burden for human health. Current treatment methods have limitations and can cause serious adverse effects. Hydrodynamic cavitation (HC) is a physical phenomenon where bubbles develop and collapse rapidly within a moving liquid due to sudden pressure changes. These collapsing bubbles provide high targeted energy which can be used in a controlled environment with the help of microfluidic devices. This study introduces a new clot-on-a-chip (CoC) platform based on HC, evaluated for thrombolysis efficacy. The microfluidic device, paired with a polydimethylsiloxane (PDMS) microchip, generates cavitation bubbles at low upstream pressures (≤482 kPa), enabling microscale blood clot erosion. Different HC exposure conditions (varying pressure and duration) are assessed by changes in clot mass, diameter, and scanning electron microscopy (SEM). The largest mass reduction occurs at 482 kPa for 120 s, with a decrease of 6.1 ± 0.12 mg, while the most erosion in diameter of blood clots is obtained 482 kPa for 120 s with complete removal. SEM results show increasing damage to clot structure from less to more intense HC exposures. The CoC platform, at controlled pressures and durations, efficiently disrupts clot structure and offers a promising drug-free alternative for thrombolysis treatment.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Nanomaterials in the Repair and Regeneration of Lymphatic Organs and Corresponding Biophysical Simulation Strategies
IF 4
Advanced Nanobiomed Research Pub Date : 2024-10-09 DOI: 10.1002/anbr.202400081
Bangheng Liu, Dong-An Wang
{"title":"Application of Nanomaterials in the Repair and Regeneration of Lymphatic Organs and Corresponding Biophysical Simulation Strategies","authors":"Bangheng Liu,&nbsp;Dong-An Wang","doi":"10.1002/anbr.202400081","DOIUrl":"https://doi.org/10.1002/anbr.202400081","url":null,"abstract":"<p>Immune system diseases, malignant tumors, and traumatic injuries can directly damage the structure and function of lymphoid organs, while subsequent radiotherapy, chemotherapy, and lymph node dissection further damage the patient's immune system, leading to immune dysfunction, metabolic disorders, and increased susceptibility to infection, which seriously affect the patient's prognosis and quality of life. In this context, nanotechnology plays a key role in lymphoid organ regeneration and immune function recovery, including improving the therapeutic effect through targeted drug delivery systems, using targeted imaging probes to achieve tumor prediction and early detection, combining nanoplatforms with immunotherapy and photodynamic therapy to achieve synergistic therapeutic effects, and using nanomaterials to regulate the tumor microenvironment to enhance the sensitivity of traditional treatments. In addition, biophysical simulation strategies that simulate the microenvironment of lymphoid organs have also attracted widespread attention, aiming to construct a native cell environment to support the regeneration and functional recovery of damaged lymphoid tissues, or to simulate immune cells to regulate lymphocytes and induce specific immune responses. The multifaceted application of nanotechnology provides promising prospects for lymphoid organ regeneration and immune system repair.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Additive Manufactured Scaffolds Mimicking the Osteochondral Interface 模拟骨软骨界面的添加剂制造支架的研究进展
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-30 DOI: 10.1002/anbr.202400059
Ivo A. O. Beeren, Pieter J. Dijkstra, Carlos Mota, Sandra Camarero-Espinosa, Matthew B. Baker, Lorenzo Moroni
{"title":"Advances in Additive Manufactured Scaffolds Mimicking the Osteochondral Interface","authors":"Ivo A. O. Beeren,&nbsp;Pieter J. Dijkstra,&nbsp;Carlos Mota,&nbsp;Sandra Camarero-Espinosa,&nbsp;Matthew B. Baker,&nbsp;Lorenzo Moroni","doi":"10.1002/anbr.202400059","DOIUrl":"https://doi.org/10.1002/anbr.202400059","url":null,"abstract":"<p>Architectural, compositional, and mechanical gradients are present in many interfacial tissues in the body. Yet desired for regeneration, the recreation of these complex natural gradients in porous scaffolds remains a challenging task. Additive manufacturing (AM) has been highlighted as a technology to fabricate constructs to regenerate interfacial tissues. Integration of different types of gradients, which can be physical, mechanical, and/or biochemical, shows promise to control cell fate and the regeneration process in a spatial controlled manner. One of the most studied tissue interfaces is the osteochondral unit which connects cartilage to bone. This tissue is often damaged because of trauma or ageing, leading to osteoarthritis; a degenerative disease and a major cause of disability worldwide. Therefore, in view of osteochondral (OC) regeneration, a state-of-the-art overview of current approaches is presented to manufacture gradient scaffolds prepared by AM techniques. The focus is on thermoplastic, hydrogel, and hybrid scaffolds comprising gradients that induce biomimicry by their physical and biological properties. The effect of these different systems on OC tissue formation in-vitro and in-vivo is addressed. Finally, an outlook on current trends of dynamic materials is provided, including proposals on how these materials could improve the mimicry of scaffolds applied for OC regeneration.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification 将 DNA 微流控封装在液体珠中用于数字环路介导等温扩增
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-30 DOI: 10.1002/anbr.202400044
Fariba Malekpour Galogahi, Simon Strachan, Ajeet Singh Yadav, Helen Stratton, Nam-Trung Nguyen
{"title":"Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification","authors":"Fariba Malekpour Galogahi,&nbsp;Simon Strachan,&nbsp;Ajeet Singh Yadav,&nbsp;Helen Stratton,&nbsp;Nam-Trung Nguyen","doi":"10.1002/anbr.202400044","DOIUrl":"https://doi.org/10.1002/anbr.202400044","url":null,"abstract":"<p>Digital nucleic acid analysis has emerged as a prominent tool for the detection and absolute quantification of diverse pathogens. Digital loop-mediated isothermal amplification (dLAMP) offers highly sensitive, specific, time-efficient, and cost-effective nucleic acid amplification. However, existing dLAMP techniques face challenges such as droplet merging, reliance on surfactants, restricted partition capacities, and the potential for sample loss during heating. Herein, these issues are addressed by introducing liquid beads for sample partitioning. Compared to microwells, our approach overcomes the limitations of chamber dimensions, enabling the analysis of an unlimited number of digitized targets. Furthermore, our novel approach effectively addresses sample loss and merging during thermal processing and eliminates the need for surfactants. Accurate and reproducible the quantitative detection of the gene cluster XALB1 of leaf scald disease is conducted using dLAMP based on liquid beads to verify its availability. The results demonstrate a high correlation between target concentration and positive signals, indicating the robust performance of our technique. A comparative analysis is then performed between dLAMP using liquid beads and using single droplets. Benchmarking these two techniques highlights the effectiveness of our innovative technique in overcoming existing challenges in dLAMP.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Human Amniotic Membrane Suspension Improves the Therapeutic Effect of Mesenchymal Stem Cells on Myocardial Infarction in Rats 新型人羊膜悬浮液改善了间充质干细胞对大鼠心肌梗死的治疗效果
IF 4
Advanced Nanobiomed Research Pub Date : 2024-09-30 DOI: 10.1002/anbr.202400084
Zhaoyi Li, Meirong Zhang, Yi Wang, Yijia Li, Yi Zhun Zhu
{"title":"A Novel Human Amniotic Membrane Suspension Improves the Therapeutic Effect of Mesenchymal Stem Cells on Myocardial Infarction in Rats","authors":"Zhaoyi Li,&nbsp;Meirong Zhang,&nbsp;Yi Wang,&nbsp;Yijia Li,&nbsp;Yi Zhun Zhu","doi":"10.1002/anbr.202400084","DOIUrl":"https://doi.org/10.1002/anbr.202400084","url":null,"abstract":"<p>Mesenchymal stem cell (MSC) therapy aids cardiac repair and regeneration, but the low rate of MSC survival and engulfment in the infarcted heart remains a major obstacle for routine clinical application. Here, an injectable suspension of human acellular amniotic membrane (HAAM) that may serve as synergistic cell delivery vehicle for the treatment of myocardial infarction (MI) by improving MSC homing and survival is developed. The results demonstrate that compared with MSC transplantation alone, HAAM-loaded MSCs have higher survival and engraftment rates in infarcted tissue, alleviated hypoxia-induced myocardial damage, achieved higher improvements in cardiac function, promoted angiogenesis, and reduced myocardial fibrosis. In addition, HAAM-loaded MSCs increase N-cadherin levels and thereby enhance the efficacy of MSCs in treating MI. This study provides a new approach for MSC-based cardiac repair and regeneration.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信