Reece McCoy, Jeremy Treiber, George G. Malliaras, Alberto Salleo, Róisín M. Owens
{"title":"Polarized Intestinal Cell Membrane-on-Chip for Bacterial Toxin Interaction Studies","authors":"Reece McCoy, Jeremy Treiber, George G. Malliaras, Alberto Salleo, Róisín M. Owens","doi":"10.1002/anbr.202400135","DOIUrl":null,"url":null,"abstract":"<p>\nThe virulence of a pathogen is tied to the successful interaction between the pathogen, or its toxins, and the host cell. Polarized epithelial cells, constituting highly specialized cell monolayers, possess apical and basolateral membrane regions with distinct functions and structural compositions. Preserving these intricacies in cell membrane-on-a-chip platforms is important for retaining physiological relevance for investigating host–pathogen interactions. Consequently, a method for obtaining distinct populations of cell membrane vesicles representing the apical and basolateral membranes is presented here, in addition to the formation of their respective supported lipid bilayers (SLBs) on PEDOT:PSS conducting polymer electrodes. The apical localization of the A metalloprotease and disintegrin (ADAM10) receptor in Caco-2 cells is shown to correlate with the increased response of the <i>Staphylococcus aureus</i> alpha hemolysin toxin on membrane-on-a-chip platforms compared to the basolateral membrane model where the ADAM10 receptor is absent. The interaction between SLBs and the alpha hemolysin-containing extracellular vesicles (EVs) secreted by <i>S. aureus</i> confirm the direct effect of toxin-containing EVs on reducing the resistance of plasma membrane. This technique could find use in quantifying relative toxicity to the cell membrane, screening for cognate receptors and inhibitors, and probing toxin mechanism of action.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The virulence of a pathogen is tied to the successful interaction between the pathogen, or its toxins, and the host cell. Polarized epithelial cells, constituting highly specialized cell monolayers, possess apical and basolateral membrane regions with distinct functions and structural compositions. Preserving these intricacies in cell membrane-on-a-chip platforms is important for retaining physiological relevance for investigating host–pathogen interactions. Consequently, a method for obtaining distinct populations of cell membrane vesicles representing the apical and basolateral membranes is presented here, in addition to the formation of their respective supported lipid bilayers (SLBs) on PEDOT:PSS conducting polymer electrodes. The apical localization of the A metalloprotease and disintegrin (ADAM10) receptor in Caco-2 cells is shown to correlate with the increased response of the Staphylococcus aureus alpha hemolysin toxin on membrane-on-a-chip platforms compared to the basolateral membrane model where the ADAM10 receptor is absent. The interaction between SLBs and the alpha hemolysin-containing extracellular vesicles (EVs) secreted by S. aureus confirm the direct effect of toxin-containing EVs on reducing the resistance of plasma membrane. This technique could find use in quantifying relative toxicity to the cell membrane, screening for cognate receptors and inhibitors, and probing toxin mechanism of action.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.