Kelly Shih, Niam Zaidi, Seung Ho Lee, Huaizhi Li, Donglei Emma Fan
{"title":"Nanotweezers for Manipulating Untethered Micro/Nanoscale Bio-Tools: Principles, Performance, and Highlighted Applications","authors":"Kelly Shih, Niam Zaidi, Seung Ho Lee, Huaizhi Li, Donglei Emma Fan","doi":"10.1002/anbr.202400130","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancement of nanotweezers for wireless manipulation of artificial micro- and nanoparticles has unlocked unprecedented possibilities in biomedicine. This review delves into optical, electric, and magnetic tweezers, emphasizing their roles in controlling single particles with micro/nanoscale features as miniaturized tools. Instead of providing a comprehensive review, this work highlights a select number of representative historical and contemporary examples of each type of tweezer, covering their rudimental working mechanisms, experimental setups, performance characteristics, and niche biomedical applications. Particularly, the focus lies in providing a quantitative comparison of the performances in spatial precision and degrees of freedom in controlling single particles, along with associated challenges and prospects.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of nanotweezers for wireless manipulation of artificial micro- and nanoparticles has unlocked unprecedented possibilities in biomedicine. This review delves into optical, electric, and magnetic tweezers, emphasizing their roles in controlling single particles with micro/nanoscale features as miniaturized tools. Instead of providing a comprehensive review, this work highlights a select number of representative historical and contemporary examples of each type of tweezer, covering their rudimental working mechanisms, experimental setups, performance characteristics, and niche biomedical applications. Particularly, the focus lies in providing a quantitative comparison of the performances in spatial precision and degrees of freedom in controlling single particles, along with associated challenges and prospects.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.