{"title":"用于磁触发ON/OFF DNA释放的热解核桃壳基柔性电极","authors":"Paolo Bollella, Blanca Cassano, Verdiana Marchianò, Angelo Tricase, Eleonora Macchia, Luisa Torsi","doi":"10.1002/anbr.70060","DOIUrl":null,"url":null,"abstract":"<p>A magnetically actuated DNA release platform employing sustainable walnut shell–derived electrodes enables precise ON/OFF switching of DNA release through magnetic–enzymatic filter beads, offering a controllable and reusable system for bioelectronic and sensing applications. More details can be found in the Research Article by Paolo Bollella, Luisa Torsi, and co-workers (DOI: 10.1002/anbr.202500131).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.70060","citationCount":"0","resultStr":"{\"title\":\"Pyrolyzed Walnut Shell-Based Flexible Electrodes for Magnetically Triggered ON/OFF DNA Release\",\"authors\":\"Paolo Bollella, Blanca Cassano, Verdiana Marchianò, Angelo Tricase, Eleonora Macchia, Luisa Torsi\",\"doi\":\"10.1002/anbr.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A magnetically actuated DNA release platform employing sustainable walnut shell–derived electrodes enables precise ON/OFF switching of DNA release through magnetic–enzymatic filter beads, offering a controllable and reusable system for bioelectronic and sensing applications. More details can be found in the Research Article by Paolo Bollella, Luisa Torsi, and co-workers (DOI: 10.1002/anbr.202500131).\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"5 10\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.70060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.70060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.70060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Pyrolyzed Walnut Shell-Based Flexible Electrodes for Magnetically Triggered ON/OFF DNA Release
A magnetically actuated DNA release platform employing sustainable walnut shell–derived electrodes enables precise ON/OFF switching of DNA release through magnetic–enzymatic filter beads, offering a controllable and reusable system for bioelectronic and sensing applications. More details can be found in the Research Article by Paolo Bollella, Luisa Torsi, and co-workers (DOI: 10.1002/anbr.202500131).
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.