{"title":"Pyrolyzed Walnut Shell-Based Flexible Electrodes for Magnetically Triggered ON/OFF DNA Release","authors":"Paolo Bollella, Blanca Cassano, Verdiana Marchianò, Angelo Tricase, Eleonora Macchia, Luisa Torsi","doi":"10.1002/anbr.202500131","DOIUrl":null,"url":null,"abstract":"<p>A magnetically gated, enzymatically driven DNA release platform based on sustainable pyrolyzed walnut shell-derived carbon electrodes is reported. Upon glucose addition under aerobic conditions, biocatalytic oxygen reduction at the cathode induces a local pH increase, resulting in electrostatic repulsion of negatively charged 5(6)-carboxyfluorescein-labeled DNA (FAM-labeled DNA). Electrochemical analysis reveals an oxygen reduction reaction (ORR) onset potential of +0.576 ± 0.003 V vs. Ag/AgCl and a maximum current of −8.2 ± 0.4 μA. Electrochemical impedance spectroscopy (EIS) confirms a post-ORR increase in interfacial resistance from 6.2 ± 0.5 to 11.1 ± 0.9 kΩ. DNA release reaches 97% after 400 min, corresponding to a surface density of 22 ± 4 nmol cm<sup>−2</sup>. A competing enzymatic gate, composed of co-immobilized glucose oxidase and catalase (GOx–CAT) on magnetic nanoparticles (MNPs), enables remote suppression of electron flow and DNA release upon application of a 0.3 T magnetic field. Under “OFF” conditions, DNA release is reduced to 1%, and anodic current decreases by 60%. The system exhibits excellent reversibility over four ON–OFF cycles with minimal performance degradation. This bioelectronic platform represents a self-powered, reversible strategy for stimuli-responsive drug release.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202500131","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/anbr.202500131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A magnetically gated, enzymatically driven DNA release platform based on sustainable pyrolyzed walnut shell-derived carbon electrodes is reported. Upon glucose addition under aerobic conditions, biocatalytic oxygen reduction at the cathode induces a local pH increase, resulting in electrostatic repulsion of negatively charged 5(6)-carboxyfluorescein-labeled DNA (FAM-labeled DNA). Electrochemical analysis reveals an oxygen reduction reaction (ORR) onset potential of +0.576 ± 0.003 V vs. Ag/AgCl and a maximum current of −8.2 ± 0.4 μA. Electrochemical impedance spectroscopy (EIS) confirms a post-ORR increase in interfacial resistance from 6.2 ± 0.5 to 11.1 ± 0.9 kΩ. DNA release reaches 97% after 400 min, corresponding to a surface density of 22 ± 4 nmol cm−2. A competing enzymatic gate, composed of co-immobilized glucose oxidase and catalase (GOx–CAT) on magnetic nanoparticles (MNPs), enables remote suppression of electron flow and DNA release upon application of a 0.3 T magnetic field. Under “OFF” conditions, DNA release is reduced to 1%, and anodic current decreases by 60%. The system exhibits excellent reversibility over four ON–OFF cycles with minimal performance degradation. This bioelectronic platform represents a self-powered, reversible strategy for stimuli-responsive drug release.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.