{"title":"生物医学应用中的磁动纳米材料","authors":"Jiaxiang Xiao, Qian Dong, Yiting Xu, Changwen Li, Jiayu Zeng, Xin Xia, Xiangxian Meng, Zhuo Chen","doi":"10.1002/anbr.202300136","DOIUrl":null,"url":null,"abstract":"<p>Magnetic nanomaterials, distinguished by their unique magnetic phenomena, particularly their magnetically actuated capabilities, have found widespread application in the field of nanomedicine. Compared with alternative driving mechanisms, magnetic actuation as a remote, highly permeable, and precisely controllable driving strategy endows nanomaterials with temporal and spatia mobility, making it possible to initiate and cease multiple forms of movement in vivo at will. When coupled with cutting-edge diagnostic and treating techniques including but not limited to magnetic resonance imaging, magnetothermal therapy, and magnetoelectric stimulation, magnetically actuated nanomaterials offer the potential for visual analysis, provision of reliable molecular information, and effective disease or tissue damage intervention. This review comprehensively outlines the synthesis methodologies, functional strategies, and biomedical applications of magnetically actuated nanomaterials within nanomedicine. Additionally, the future developments and applications of biocompatible magnetically actuated nanomaterials, especially in response to time-varying magnetic fields, are anticipated.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300136","citationCount":"0","resultStr":"{\"title\":\"Magnetically Actuated Nanomaterials in Biomedical Applications\",\"authors\":\"Jiaxiang Xiao, Qian Dong, Yiting Xu, Changwen Li, Jiayu Zeng, Xin Xia, Xiangxian Meng, Zhuo Chen\",\"doi\":\"10.1002/anbr.202300136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetic nanomaterials, distinguished by their unique magnetic phenomena, particularly their magnetically actuated capabilities, have found widespread application in the field of nanomedicine. Compared with alternative driving mechanisms, magnetic actuation as a remote, highly permeable, and precisely controllable driving strategy endows nanomaterials with temporal and spatia mobility, making it possible to initiate and cease multiple forms of movement in vivo at will. When coupled with cutting-edge diagnostic and treating techniques including but not limited to magnetic resonance imaging, magnetothermal therapy, and magnetoelectric stimulation, magnetically actuated nanomaterials offer the potential for visual analysis, provision of reliable molecular information, and effective disease or tissue damage intervention. This review comprehensively outlines the synthesis methodologies, functional strategies, and biomedical applications of magnetically actuated nanomaterials within nanomedicine. Additionally, the future developments and applications of biocompatible magnetically actuated nanomaterials, especially in response to time-varying magnetic fields, are anticipated.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 8\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300136\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Magnetically Actuated Nanomaterials in Biomedical Applications
Magnetic nanomaterials, distinguished by their unique magnetic phenomena, particularly their magnetically actuated capabilities, have found widespread application in the field of nanomedicine. Compared with alternative driving mechanisms, magnetic actuation as a remote, highly permeable, and precisely controllable driving strategy endows nanomaterials with temporal and spatia mobility, making it possible to initiate and cease multiple forms of movement in vivo at will. When coupled with cutting-edge diagnostic and treating techniques including but not limited to magnetic resonance imaging, magnetothermal therapy, and magnetoelectric stimulation, magnetically actuated nanomaterials offer the potential for visual analysis, provision of reliable molecular information, and effective disease or tissue damage intervention. This review comprehensively outlines the synthesis methodologies, functional strategies, and biomedical applications of magnetically actuated nanomaterials within nanomedicine. Additionally, the future developments and applications of biocompatible magnetically actuated nanomaterials, especially in response to time-varying magnetic fields, are anticipated.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.