{"title":"合成免疫学--用合成细胞自下而上构建免疫力","authors":"Oskar Staufer","doi":"10.1002/anbr.202400037","DOIUrl":null,"url":null,"abstract":"<p>Synthetic cells can advance immunotherapy, offering innovative approaches to understanding and enhancing immune responses. This review article delves into the advancements and potential of synthetic cell technologies in immunology, emphasizing their role in understanding and manipulating immune functions. Recent progress in understanding vertebrate immune systems and the challenges posed by diseases highlight the need for innovative research methods, complementing the analysis of multidimensional datasets and genetic engineering. Synthetic immune cell engineering aims to simplify the complexity of immunological systems by reconstructing them in a controlled setting. This approach, alongside high-throughput strategies, facilitates systematic investigations into immunity and the development of novel treatments. The article reviews synthetic cell technologies, focusing on their alignment with the three laws of immunity: universality, tolerance, and appropriateness. It explores the integration of synthetic cell modules to mimic processes such as controlled T-cell activation, bacteria engulfment and elimination, or cellular maturation into desirable phenotypes. Together, such advancements expand the toolbox for understanding and manipulating immune functions. Synthetic cell technologies stand at the innovation crossroads in immunology, promising to illuminate fundamental immune system principles and open new avenues for research and therapy.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400037","citationCount":"0","resultStr":"{\"title\":\"Synthetic Immunology—Building Immunity from the Bottom-Up with Synthetic Cells\",\"authors\":\"Oskar Staufer\",\"doi\":\"10.1002/anbr.202400037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic cells can advance immunotherapy, offering innovative approaches to understanding and enhancing immune responses. This review article delves into the advancements and potential of synthetic cell technologies in immunology, emphasizing their role in understanding and manipulating immune functions. Recent progress in understanding vertebrate immune systems and the challenges posed by diseases highlight the need for innovative research methods, complementing the analysis of multidimensional datasets and genetic engineering. Synthetic immune cell engineering aims to simplify the complexity of immunological systems by reconstructing them in a controlled setting. This approach, alongside high-throughput strategies, facilitates systematic investigations into immunity and the development of novel treatments. The article reviews synthetic cell technologies, focusing on their alignment with the three laws of immunity: universality, tolerance, and appropriateness. It explores the integration of synthetic cell modules to mimic processes such as controlled T-cell activation, bacteria engulfment and elimination, or cellular maturation into desirable phenotypes. Together, such advancements expand the toolbox for understanding and manipulating immune functions. Synthetic cell technologies stand at the innovation crossroads in immunology, promising to illuminate fundamental immune system principles and open new avenues for research and therapy.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
合成细胞能推动免疫疗法的发展,为了解和增强免疫反应提供创新方法。这篇综述文章深入探讨了合成细胞技术在免疫学领域的进步和潜力,强调了它们在理解和操纵免疫功能方面的作用。最近在了解脊椎动物免疫系统方面取得的进展以及疾病带来的挑战凸显了对创新研究方法的需求,这也是对多维数据集分析和基因工程的补充。合成免疫细胞工程旨在通过在受控环境下重建免疫系统来简化免疫系统的复杂性。这种方法与高通量策略相结合,有助于对免疫进行系统研究和开发新型治疗方法。文章回顾了合成细胞技术,重点是这些技术是否符合免疫的三大法则:普遍性、耐受性和适宜性。文章探讨了合成细胞模块的整合,以模拟受控 T 细胞活化、细菌吞噬和清除或细胞成熟为理想表型等过程。这些进步共同拓展了了解和操纵免疫功能的工具箱。合成细胞技术正处于免疫学创新的十字路口,有望阐明免疫系统的基本原理,为研究和治疗开辟新途径。
Synthetic Immunology—Building Immunity from the Bottom-Up with Synthetic Cells
Synthetic cells can advance immunotherapy, offering innovative approaches to understanding and enhancing immune responses. This review article delves into the advancements and potential of synthetic cell technologies in immunology, emphasizing their role in understanding and manipulating immune functions. Recent progress in understanding vertebrate immune systems and the challenges posed by diseases highlight the need for innovative research methods, complementing the analysis of multidimensional datasets and genetic engineering. Synthetic immune cell engineering aims to simplify the complexity of immunological systems by reconstructing them in a controlled setting. This approach, alongside high-throughput strategies, facilitates systematic investigations into immunity and the development of novel treatments. The article reviews synthetic cell technologies, focusing on their alignment with the three laws of immunity: universality, tolerance, and appropriateness. It explores the integration of synthetic cell modules to mimic processes such as controlled T-cell activation, bacteria engulfment and elimination, or cellular maturation into desirable phenotypes. Together, such advancements expand the toolbox for understanding and manipulating immune functions. Synthetic cell technologies stand at the innovation crossroads in immunology, promising to illuminate fundamental immune system principles and open new avenues for research and therapy.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.