Trends in Plant Science最新文献

筛选
英文 中文
Nano-selenium: a novel candidate for plant microbiome engineering.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-25 DOI: 10.1016/j.tplants.2025.02.002
Muzammil Hussain, Muhammad Adeel, Jason C White
{"title":"Nano-selenium: a novel candidate for plant microbiome engineering.","authors":"Muzammil Hussain, Muhammad Adeel, Jason C White","doi":"10.1016/j.tplants.2025.02.002","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.002","url":null,"abstract":"<p><p>The soil microbiome drives plant health and productivity. Recently, Sun and colleagues described a unique plant-microbe signaling cascade that enables selenium nanoparticle (SeNPs) formation by rhizosphere microbiota. These SeNPs boost maize performance by enriching plant-beneficial bacteria in a dose-dependent manner, offering novel paradigm for nano-microbiome engineering to promote sustainable food production.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why study the archeo-histories of dryland landraces now?
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-20 DOI: 10.1016/j.tplants.2025.01.004
Guy Bar-Oz, Joshua Schmidt
{"title":"Why study the archeo-histories of dryland landraces now?","authors":"Guy Bar-Oz, Joshua Schmidt","doi":"10.1016/j.tplants.2025.01.004","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.004","url":null,"abstract":"<p><p>Living landrace fruit trees are preserved in the margins of the Mediterranean countryside. Often found in drought-prone areas and historically selected and bred for resilience to aridity, landrace cultivars have distinctive genetic identities. The study of their longevity, endurance, and intergenerational traits reveals how historical farmers adapted to harsh environments through resource management and the use of prized cultivars. We propose a model to merge archeological and socio-historical methods to contextualize the biological narratives in landrace fruit tree cultivars within their historical origins. Insights from this manner of research can enhance sustainable horticulture practices by offering innovative recourses for reclaiming traditional landrace cultivars. Using ancient landrace varieties to increase plant diversity can have various financial, cultural, and ecological benefits for modern agriculture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory principles of photoperiod-driven clock function in plants.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-20 DOI: 10.1016/j.tplants.2025.01.008
Alberto González-Delgado, José M Jiménez-Gómez, Krzysztof Wabnik
{"title":"Regulatory principles of photoperiod-driven clock function in plants.","authors":"Alberto González-Delgado, José M Jiménez-Gómez, Krzysztof Wabnik","doi":"10.1016/j.tplants.2025.01.008","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.008","url":null,"abstract":"<p><p>The circadian clock provides a fundamental timing mechanism for plant fitting to seasonal changes in the photoperiod. Although photoperiodic regulation of developmental transition has been studied in several species, our understanding of core circadian clock parallelisms across species is sparse. Here we present a comparative analysis of circadian clock networks by identifying common regulatory principles that govern key genes in photoperiodic developmental transition. Using time-course transcriptomic datasets from long-day plants and short-day plants taken in different photoperiods, we propose a model that integrates a minimal set of circadian clock components to predict the necessary conditions governing species-specific clock outputs. This study identifies regulatory patterns associated with circadian clock function across different plants, linking photoperiod interpretation with minimal clock architecture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing future roots with the power of databases.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-20 DOI: 10.1016/j.tplants.2025.01.012
Maxime Phalempin, Hannah Schneider, Eusun Han, Lingyun Cheng, Doris Vetterlein
{"title":"Designing future roots with the power of databases.","authors":"Maxime Phalempin, Hannah Schneider, Eusun Han, Lingyun Cheng, Doris Vetterlein","doi":"10.1016/j.tplants.2025.01.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.012","url":null,"abstract":"<p><p>Databases are vital for participative science, particularly in root research. These platforms centralize diverse data, foster collaboration, and reduce redundancy. However, underuse remains a challenge because of lack of incentives, standardization issues, and low visibility. Increased database use could significantly advance the contribution of root research to crop development.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DELLA family proteins function beyond the GA pathway.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-17 DOI: 10.1016/j.tplants.2025.01.007
Jin-Dong Wang, Qiao-Quan Liu, Qian-Feng Li
{"title":"DELLA family proteins function beyond the GA pathway.","authors":"Jin-Dong Wang, Qiao-Quan Liu, Qian-Feng Li","doi":"10.1016/j.tplants.2025.01.007","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.007","url":null,"abstract":"<p><p>DELLA degradation is controlled not only by gibberellic acid (GA) but also by various GA/GID1-independent factors such as light, temperature, and shade. New insights on the evolution of DELLA family proteins and the biological role of DELLA-like proteins in seed traits provides valuable directions for future crop breeding programs.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restoring unbalanced rhizosphere: microbiome transplants combatting leaf diseases.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-13 DOI: 10.1016/j.tplants.2025.01.011
Ademir S F Araujo, Arthur P A Pereira, Erika V de Medeiros, Lucas W Mendes
{"title":"Restoring unbalanced rhizosphere: microbiome transplants combatting leaf diseases.","authors":"Ademir S F Araujo, Arthur P A Pereira, Erika V de Medeiros, Lucas W Mendes","doi":"10.1016/j.tplants.2025.01.011","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.011","url":null,"abstract":"<p><p>Similar to humans, plants experience microbiome imbalance, which increases their vulnerability to pathogens. In a recent study, Ketehouli et al. applied a soil microbiome transplant (SMT) to restore the microbiome balance, which potentially reduced the severity of leaf diseases. Here, we examine this approach, highlighting its limitation and offering perspectives on its use for controlling leaf diseases in plants.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sophisticated regulation of broad-spectrum disease resistance in maize.
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-04 DOI: 10.1016/j.tplants.2025.01.002
Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou
{"title":"Sophisticated regulation of broad-spectrum disease resistance in maize.","authors":"Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou","doi":"10.1016/j.tplants.2025.01.002","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.002","url":null,"abstract":"<p><p>Maize production suffers largely from the unpredictable and often simultaneous occurrence of multiple diseases, highlighting the urgent need for broad-spectrum resistant (BSR) genes. Recently, Zhu et al. identified a ZmCPK39-ZmDi19-ZmPR10 module that confers resistance to three maize (Zea mays) foliar diseases, providing a strategic framework to improve maize BSR.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two mutations in one QTL confer shattering resistance. 一个QTL中的两个突变赋予粉碎抗性。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-01 Epub Date: 2024-12-07 DOI: 10.1016/j.tplants.2024.11.008
Vijay Gahlaut, Vandana Jaiswal
{"title":"Two mutations in one QTL confer shattering resistance.","authors":"Vijay Gahlaut, Vandana Jaiswal","doi":"10.1016/j.tplants.2024.11.008","DOIUrl":"10.1016/j.tplants.2024.11.008","url":null,"abstract":"<p><p>Resistance to shattering is essential for seed production in domesticated crops. In a recent study, Li et al. found that this trait arose in soybean through mutations in two genes, Shattering1 (Sh1) and Pod dehiscence1 (Pdh1), within a single quantitative trait locus (QTL). Sh1 reduces fiber cap cell wall thickness, while Pdh1 regulates lignin distribution. These genes could be valuable targets for breeding shattering-resistant crops.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"131-133"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay of singlet oxygen and ABI4 in plant growth regulation. 单线态氧和 ABI4 在植物生长调节中的相互作用
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-01 Epub Date: 2024-10-15 DOI: 10.1016/j.tplants.2024.09.007
Zhong-Wei Zhang, Yu-Fan Fu, Guang-Deng Chen, Christiane Reinbothe, Steffen Reinbothe, Shu Yuan
{"title":"The interplay of singlet oxygen and ABI4 in plant growth regulation.","authors":"Zhong-Wei Zhang, Yu-Fan Fu, Guang-Deng Chen, Christiane Reinbothe, Steffen Reinbothe, Shu Yuan","doi":"10.1016/j.tplants.2024.09.007","DOIUrl":"10.1016/j.tplants.2024.09.007","url":null,"abstract":"<p><p>Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"156-166"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does mRNA targeting explain gene retention in chloroplasts? mRNA 靶向能否解释叶绿体中基因的保留?
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2025-02-01 Epub Date: 2024-10-22 DOI: 10.1016/j.tplants.2024.09.017
Wolfgang R Hess, Annegret Wilde, Conrad W Mullineaux
{"title":"Does mRNA targeting explain gene retention in chloroplasts?","authors":"Wolfgang R Hess, Annegret Wilde, Conrad W Mullineaux","doi":"10.1016/j.tplants.2024.09.017","DOIUrl":"10.1016/j.tplants.2024.09.017","url":null,"abstract":"<p><p>During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"147-155"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信