Zhongzhen Tang, Tianyou Jiang, Yongzhen Wang, Xiaoyong Sun
{"title":"LiDAR: a new player in analyzing plant phenotypes.","authors":"Zhongzhen Tang, Tianyou Jiang, Yongzhen Wang, Xiaoyong Sun","doi":"10.1016/j.tplants.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.007","url":null,"abstract":"","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marissa Y Annis, Claire M Ravenburg, Klaas J van Wijk
{"title":"Uvr motifs regulate the chloroplast Clp chaperone-protease system.","authors":"Marissa Y Annis, Claire M Ravenburg, Klaas J van Wijk","doi":"10.1016/j.tplants.2024.09.015","DOIUrl":"10.1016/j.tplants.2024.09.015","url":null,"abstract":"<p><p>Chloroplast proteostasis relies on diverse proteases, including the essential Clp chaperone-protease system. Two chloroplast ClpC AAA+ chaperones and the plant-specific adaptor ClpF contain an Uvr motif with predicted coiled-coiled structures implicated in protein-protein interactions. Head-to-head contacts between Uvr motifs in middle (M)-domains regulate the oligomerization and activation of several bacterial Clp chaperones. Interestingly, in arabidopsis (Arabidopsis thaliana), this Uvr motif is found in six additional chloroplast proteins (Executer1, Executer2, and Uvr1-4). Here, we first summarize evidence that Uvr motifs regulate proteostasis in bacteria. Based on this evidence and recent results in arabidopsis, we postulate that arabidopsis Uvr motif proteins regulate chloroplast Clp proteolysis. We propose specific working hypotheses to test the function of the Uvr motif in chloroplast proteostasis.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple layers of regulators emerge in the network controlling lateral root organogenesis.","authors":"Antoine Beckers, Akihito Mamiya, Masahiko Furutani, Malcolm J Bennett, Hidehiro Fukaki, Shinichiro Sawa, Pascal Gantet, Laurent Laplaze, Soazig Guyomarc'h","doi":"10.1016/j.tplants.2024.09.018","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.09.018","url":null,"abstract":"<p><p>Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wolfgang R Hess, Annegret Wilde, Conrad W Mullineaux
{"title":"Does mRNA targeting explain gene retention in chloroplasts?","authors":"Wolfgang R Hess, Annegret Wilde, Conrad W Mullineaux","doi":"10.1016/j.tplants.2024.09.017","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.09.017","url":null,"abstract":"<p><p>During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crafting friendly microbiomes as plant bodyguards against pests.","authors":"Shilpi Sharma","doi":"10.1016/j.tplants.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.001","url":null,"abstract":"<p><p>Research has shown that acclimatizing plant-associated microbiomes through repeated cycles of selection pressure can enhance plant resilience to abiotic stresses. A recent study by Enders et al. expanded this concept by selecting plant-associated microbiomes for insect resistance, paving the way for microbiome engineering to enhance plant fitness.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The interplay of singlet oxygen and ABI4 in plant growth regulation.","authors":"Zhong-Wei Zhang, Yu-Fan Fu, Guang-Deng Chen, Christiane Reinbothe, Steffen Reinbothe, Shu Yuan","doi":"10.1016/j.tplants.2024.09.007","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.09.007","url":null,"abstract":"<p><p>Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar Joubert, Gontran Arnault, Matthieu Barret, Marie Simonin
{"title":"Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering.","authors":"Oscar Joubert, Gontran Arnault, Matthieu Barret, Marie Simonin","doi":"10.1016/j.tplants.2024.09.004","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.09.004","url":null,"abstract":"<p><p>Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cracking the plant VOC sensing code and its practical applications.","authors":"Gen-Ichiro Arimura, Takuya Uemura","doi":"10.1016/j.tplants.2024.09.005","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.09.005","url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) are essential airborne mediators of interactions between plants. These plant-plant interactions require sophisticated VOC-sensing mechanisms that enable plants to regulate their defenses against pests. However, these interactions are not limited to specific plants or even conspecifics, and can function in very flexible interactions between plants. Sensing and responding to VOCs in plants is finely controlled by their uptake and transport systems as well as by cellular signaling via, for example, chromatin remodeling system-based transcriptional regulation for defense gene activation. Based on the accumulated knowledge about the interactions between plants and their major VOCs, companion plants and biostimulants are being developed for practical applications in agricultural and horticultural pest control, providing a sustainable alternative to harmful chemicals.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding resilience: ecology, regulation, and evolution of biosynthetic gene clusters.","authors":"George Lister Cawood, Jurriaan Ton","doi":"10.1016/j.tplants.2024.09.008","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.09.008","url":null,"abstract":"<p><p>Secondary metabolism is crucial for plant survival and can generate chemistry with nutritional, therapeutic, and industrial value. Biosynthetic genes of selected secondary metabolites cluster within localised chromosomal regions. The arrangement of these biosynthetic gene clusters (BGCs) challenges the long-held model of random gene order in eukaryotes, raising questions about their regulation, ecological significance, and evolution. In this review, we address these questions by exploring the contribution of BGCs to ecologically relevant plant-biotic interactions, while also evaluating the molecular-(epi)genetic mechanisms controlling their coordinated stress- and tissue-specific expression. Based on evidence that BGCs have distinct chromatin signatures and are enriched with transposable elements (TEs), we integrate emerging hypotheses into an updated evolutionary model emphasising how stress-induced epigenetic processes have shaped BGC formation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuri G Figueiredo, Karla Gasparini, Mustafa Bulut, Alisdair R Fernie, Agustin Zsögön
{"title":"The genetic basis of prickle loss in the Solanaceae.","authors":"Yuri G Figueiredo, Karla Gasparini, Mustafa Bulut, Alisdair R Fernie, Agustin Zsögön","doi":"10.1016/j.tplants.2024.09.016","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.09.016","url":null,"abstract":"<p><p>In a recent study, Satterlee et al. found that the repeated emergence of prickleless varieties in Solanaceae species is a convergent trait caused by loss of function in the cytokinin-activating enzyme LONELY GUY (LOG). New prickleless forms can be created in wild and domesticated forms using gene editing.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}