Trends in Plant Science最新文献

筛选
英文 中文
Resilient plants, sustainable future. 坚韧的植物,可持续的未来。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-28 DOI: 10.1016/j.tplants.2024.11.001
Seung Y Rhee, Daniel N Anstett, Edgar B Cahoon, Alejandra A Covarrubias-Robles, Eric Danquah, Natalia Dudareva, Hiroshi Ezura, Kadeem J Gilbert, Rodrigo A Gutiérrez, Michelle Heck, David B Lowry, Ron Mittler, Gloria Muday, Clare Mukankusi, Andrew D L Nelson, Silvia Restrepo, Hatem Rouached, Motoaki Seki, Berkley Walker, Danielle Way, Andreas P M Weber
{"title":"Resilient plants, sustainable future.","authors":"Seung Y Rhee, Daniel N Anstett, Edgar B Cahoon, Alejandra A Covarrubias-Robles, Eric Danquah, Natalia Dudareva, Hiroshi Ezura, Kadeem J Gilbert, Rodrigo A Gutiérrez, Michelle Heck, David B Lowry, Ron Mittler, Gloria Muday, Clare Mukankusi, Andrew D L Nelson, Silvia Restrepo, Hatem Rouached, Motoaki Seki, Berkley Walker, Danielle Way, Andreas P M Weber","doi":"10.1016/j.tplants.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.11.001","url":null,"abstract":"<p><p>The accelerated pace of climate change over the past several years should serve as a wake-up call for all scientists, farmers, and decision makers, as it severely threatens our food supply and could result in famine, migration, war, and an overall destabilization of our society. Rapid and significant changes are therefore needed in the way we conduct research on plant resilience, develop new crop varieties, and cultivate those crops in our agricultural systems. Here, we describe the main bottlenecks for these processes and outline a set of key recommendations on how to accelerate research in this critical area for our society.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photosynthetic advantages of conifers in the boreal forest. 北方森林针叶树的光合作用优势。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-22 DOI: 10.1016/j.tplants.2024.10.018
Pushan Bag, Alexander G Ivanov, Norman P Huner, Stefan Jansson
{"title":"Photosynthetic advantages of conifers in the boreal forest.","authors":"Pushan Bag, Alexander G Ivanov, Norman P Huner, Stefan Jansson","doi":"10.1016/j.tplants.2024.10.018","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.018","url":null,"abstract":"<p><p>Boreal conifers - the 'Christmas trees' - maintain their green needles over the winter by retaining their chlorophyll. These conifers face the toughest challenge in February and March, when subzero temperatures coincide with high solar radiation. To balance the light energy they harvest with the light energy they utilise, conifers deploy various mechanisms in parallel. These include, thylakoid destacking, which facilitates direct energy transfer from Photosystem II (PSII) to Photosystem I (PSI), and excess energy dissipation through sustained nonphotochemical quenching (NPQ). Additionally, they upregulate alternative electron transport pathways to safely reroute excess electrons while maintaining ATP production. From an evolutionary and ecological perspective, we consider these mechanisms as part of a comprehensive photosynthetic alteration, which enhances our understanding of winter acclimation in conifers and their dominance in the boreal forests.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil compaction sensing mechanisms and root responses. 土壤压实感应机制和根系反应。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-18 DOI: 10.1016/j.tplants.2024.10.014
Lucas L Peralta Ogorek, Yiqun Gao, Edward Farrar, Bipin K Pandey
{"title":"Soil compaction sensing mechanisms and root responses.","authors":"Lucas L Peralta Ogorek, Yiqun Gao, Edward Farrar, Bipin K Pandey","doi":"10.1016/j.tplants.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.014","url":null,"abstract":"<p><p>Soil compaction is an agricultural challenge with profound influence on the physical, chemical, and biological properties of the soil. It causes drastic changes by increasing mechanical impedance, reducing water infiltration, gaseous exchange, and biological activities. Soil compaction hinders root growth, limiting nutrient and water foraging abilities of plants. Recent research reveals that plant roots sense soil compaction due to higher ethylene accumulation in and around root tips. Ethylene orchestrates auxin and abscisic acid as downstream signals to regulate root adaptive responses to soil compaction. In this review, we describe the changes inflicted by soil compaction ranging from cell to organ scale and explore the latest research regarding plant root compaction sensing and response.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasticity in plant mating systems. 植物交配系统的可塑性
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-18 DOI: 10.1016/j.tplants.2024.10.013
Hanneke A C Suijkerbuijk, Sergio E Ramos, Erik H Poelman
{"title":"Plasticity in plant mating systems.","authors":"Hanneke A C Suijkerbuijk, Sergio E Ramos, Erik H Poelman","doi":"10.1016/j.tplants.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.013","url":null,"abstract":"<p><p>Many plants are extremely plastic in their vegetative and life-history traits, allowing them to deal with a variety of environmental conditions during their lifetime. However, in our understanding of plant reproduction, plasticity in mating system is not broadly considered. Even though mating system shifts are well studied on an evolutionary timescale, we show that many traits affecting plant mating system also show plasticity within an ecological timeframe. This plasticity in reproduction can be found in prepollination, in interactions with pollinators, and in various postpollination processes. We bring together molecular and ecological work on plant reproduction and guide future research on mating systems to embrace trait plasticity and context dependency of mating strategies.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The whole and its parts: cell-specific functions of brassinosteroids. 整体及其部分:铜质类固醇的细胞特异功能。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-18 DOI: 10.1016/j.tplants.2024.10.015
Ziv Aardening, Hitaishi Khandal, Ori Avraham Erlichman, Sigal Savaldi-Goldstein
{"title":"The whole and its parts: cell-specific functions of brassinosteroids.","authors":"Ziv Aardening, Hitaishi Khandal, Ori Avraham Erlichman, Sigal Savaldi-Goldstein","doi":"10.1016/j.tplants.2024.10.015","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.015","url":null,"abstract":"<p><p>Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do storage reserves contribute to plant phenotypic plasticity? 贮藏储备有助于植物表型的可塑性吗?
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-18 DOI: 10.1016/j.tplants.2024.10.017
Joerg Fettke, Alisdair R Fernie
{"title":"Do storage reserves contribute to plant phenotypic plasticity?","authors":"Joerg Fettke, Alisdair R Fernie","doi":"10.1016/j.tplants.2024.10.017","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.017","url":null,"abstract":"<p><p>The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity. Among these isoforms, some with entirely new functions have emerged, involved in novel metabolic pathways for carbon storage. Here, we discuss the role of these carbon stores, their impact on plant plasticity, methods by which such metabolic plasticity can be analyzed, and evolutionary aspects that have led to well-characterized as well as less well-known molecular mechanisms underlying carbon storage.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological intensification index: reducing global footprint of agriculture. 生态强化指数:减少农业的全球足迹。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-15 DOI: 10.1016/j.tplants.2024.10.011
Ülo Niinemets, Martin Zobel
{"title":"Ecological intensification index: reducing global footprint of agriculture.","authors":"Ülo Niinemets, Martin Zobel","doi":"10.1016/j.tplants.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.011","url":null,"abstract":"<p><p>Because of the growing human population, increasing agricultural yields is becoming increasingly more important. However, various environmental crises have led society to demand a reduction in the environmental damage caused by agriculture. Until now, the economic and ecological aspects of plant cultivation have developed largely independently. Here, we propose a novel ecological intensification index (EII) that integrates both economic and ecological goals, measured in relative units as the realized proportion of a possible maximum value. The EII can incorporate multiple ecological and/or economic measures with different weights to balance societal needs, environmental concerns, and scientific knowledge. Using the EII will provide a quantitative target for breeders, agronomists, and farmers to catalyze innovation toward a minimal ecological impact of agriculture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogen effectors hijack calcium signaling to promote virulence. 病原体效应器劫持钙信号以增强毒性。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-09 DOI: 10.1016/j.tplants.2024.10.012
Jean-Philippe Galaud, Stéphane Genin, Didier Aldon
{"title":"Pathogen effectors hijack calcium signaling to promote virulence.","authors":"Jean-Philippe Galaud, Stéphane Genin, Didier Aldon","doi":"10.1016/j.tplants.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.012","url":null,"abstract":"<p><p>Calcium signaling is a cornerstone of plant defense responses. In this opinion article we explore how pathogens exploit this pathway by targeting calcium sensors such as calmodulin (CaM) and calmodulin-like proteins (CMLs) with their secreted effectors. We illustrate different mechanisms by which effectors manipulate calcium homeostasis, cytoskeletal dynamics, metabolism, hormone biosynthesis, gene regulation, and chloroplast function to suppress plant immunity and enhance virulence. Targeting calcium signaling to thwart or weaken host defenses appears to be a common strategy among pathogens infecting animal cells, and we present here selected examples of this convergence. Understanding these strategies provides valuable insights into the interactions between plants and pathogens, and should pave the way for the development of new disease control strategies.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HSFA1 heat shock factors integrate warm temperature and heat signals in plants. HSFA1 热休克因子整合了植物中的温热信号。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-01 Epub Date: 2024-07-15 DOI: 10.1016/j.tplants.2024.07.002
Vidhi Raturi, Gaurav Zinta
{"title":"HSFA1 heat shock factors integrate warm temperature and heat signals in plants.","authors":"Vidhi Raturi, Gaurav Zinta","doi":"10.1016/j.tplants.2024.07.002","DOIUrl":"10.1016/j.tplants.2024.07.002","url":null,"abstract":"<p><p>Warm temperatures and heat stress trigger distinct plant responses. Recently, Li et al. and Tan et al. identified HSFA1 heat shock transcription factors (HSFs) as central gatekeepers of high-temperature signaling, integrating warm temperature and heat shock responses (HSRs) in arabidopsis (Arabidopsis thaliana). HSFA1d stabilizes phytochrome-interacting factor 4 (PIF4) and activates HSFA2, establishing a crosstalk between thermomorphogenesis and thermotolerance.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"1165-1167"},"PeriodicalIF":17.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Belowground cascading biotic interactions trigger crop diversity benefits. 地下级联生物相互作用引发作物多样性效益。
IF 17.3 1区 生物学
Trends in Plant Science Pub Date : 2024-11-01 Epub Date: 2024-05-30 DOI: 10.1016/j.tplants.2024.04.010
Chunjie Li, Hans Lambers, Jingying Jing, Chaochun Zhang, T Martijn Bezemer, John Klironomos, Wen-Feng Cong, Fusuo Zhang
{"title":"Belowground cascading biotic interactions trigger crop diversity benefits.","authors":"Chunjie Li, Hans Lambers, Jingying Jing, Chaochun Zhang, T Martijn Bezemer, John Klironomos, Wen-Feng Cong, Fusuo Zhang","doi":"10.1016/j.tplants.2024.04.010","DOIUrl":"10.1016/j.tplants.2024.04.010","url":null,"abstract":"<p><p>Crop diversification practices offer numerous synergistic benefits. So far, research has traditionally been confined to exploring isolated, unidirectional single-process interactions among plants, soil, and microorganisms. Here, we present a novel and systematic perspective, unveiling the intricate web of plant-soil-microbiome interactions that trigger cascading effects. Applying the principles of cascading interactions can be an alternative way to overcome soil obstacles such as soil compaction and soil pathogen pressure. Finally, we introduce a research framework comprising the design of diversified cropping systems by including commercial varieties and crops with resource-efficient traits, the exploration of cascading effects, and the innovation of field management. We propose that this provides theoretical and methodological insights that can reveal new mechanisms by which crop diversity increases productivity.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"1191-1202"},"PeriodicalIF":17.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信