Nutrient limitations on photosynthesis: from individual to combinational stresses.

IF 17.3 1区 生物学 Q1 PLANT SCIENCES
Zhifeng Lu, Tao Ren, Yong Li, Ismail Cakmak, Jianwei Lu
{"title":"Nutrient limitations on photosynthesis: from individual to combinational stresses.","authors":"Zhifeng Lu, Tao Ren, Yong Li, Ismail Cakmak, Jianwei Lu","doi":"10.1016/j.tplants.2025.03.006","DOIUrl":null,"url":null,"abstract":"<p><p>Liebig's law of the minimum states that increasing photosynthetic productivity on nutrient-impoverished soils depends on addressing the most limiting nutrient. Research has identified the roles of different mineral nutrients in photosynthetic processes. However, diffusional and biochemical regulation of photosynthesis both feature patterns of cumulative effects that jointly determine photosynthetic capacity. More importantly, responses to multiple nutrient stresses are not simply additive and require a comprehensive understanding of how these stresses interact and impact photosynthetic performance. In this review we highlight key macroelements for photosynthesis - nitrogen, phosphorus, potassium, and magnesium - focusing on their unique functions and interactions in regulating carbon fixation under multiple nutrient deficiencies, with the goal of enhancing crop productivity through balanced nutrient applications.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.03.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Liebig's law of the minimum states that increasing photosynthetic productivity on nutrient-impoverished soils depends on addressing the most limiting nutrient. Research has identified the roles of different mineral nutrients in photosynthetic processes. However, diffusional and biochemical regulation of photosynthesis both feature patterns of cumulative effects that jointly determine photosynthetic capacity. More importantly, responses to multiple nutrient stresses are not simply additive and require a comprehensive understanding of how these stresses interact and impact photosynthetic performance. In this review we highlight key macroelements for photosynthesis - nitrogen, phosphorus, potassium, and magnesium - focusing on their unique functions and interactions in regulating carbon fixation under multiple nutrient deficiencies, with the goal of enhancing crop productivity through balanced nutrient applications.

光合作用的营养限制:从个体胁迫到组合胁迫。
李比希最小值定律指出,在营养贫乏的土壤上,提高光合作用生产力取决于解决最有限的养分问题。研究已经确定了不同的矿质营养素在光合作用过程中的作用。然而,光合作用的扩散调节和生化调节都具有累积效应模式,共同决定光合能力。更重要的是,对多种营养胁迫的反应不是简单的相加,需要对这些胁迫如何相互作用和影响光合性能有全面的了解。本文综述了氮、磷、钾、镁等光合作用的关键元素,重点介绍了它们在多种营养缺乏条件下调节碳固定的独特功能和相互作用,以期通过平衡养分施用提高作物生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信