Nidhi Kandhol, Prasanta K Dash, Vijay Pratap Singh, Rupesh Deshmukh, Om Parkash Dhankher, Lam-Son Phan Tran, Jason C White, Durgesh Kumar Tripathi
{"title":"基于纳米材料的植物基因传递:一场即将到来的基因革命?","authors":"Nidhi Kandhol, Prasanta K Dash, Vijay Pratap Singh, Rupesh Deshmukh, Om Parkash Dhankher, Lam-Son Phan Tran, Jason C White, Durgesh Kumar Tripathi","doi":"10.1016/j.tplants.2025.04.012","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional gene-delivery methods in plant genetic engineering, such as electroporation and Agrobacterium-mediated transformation, face limitations such as species dependency, low efficiency, high cost, and undesirable DNA integration into the host genome. Integrating nanotechnology with existing molecular techniques offers a promising solution. Nanocarriers can precisely target tissues, cells, and organelles by penetrating biological barriers and protecting the cargo from degradation. The nanocarrier-based gene delivery approach addresses challenges, such as collateral damage and inefficient DNA integration, and paves the way for the development of crops with desired traits. Future research should optimize nanocarriers for efficient and precise gene delivery while minimizing off-target effects. Sustainable, cost-effective materials can enhance large-scale agricultural applications, thereby revolutionizing crop production for global food security and advancing sustainable practices.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterial-based gene delivery in plants: an upcoming genetic revolution?\",\"authors\":\"Nidhi Kandhol, Prasanta K Dash, Vijay Pratap Singh, Rupesh Deshmukh, Om Parkash Dhankher, Lam-Son Phan Tran, Jason C White, Durgesh Kumar Tripathi\",\"doi\":\"10.1016/j.tplants.2025.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional gene-delivery methods in plant genetic engineering, such as electroporation and Agrobacterium-mediated transformation, face limitations such as species dependency, low efficiency, high cost, and undesirable DNA integration into the host genome. Integrating nanotechnology with existing molecular techniques offers a promising solution. Nanocarriers can precisely target tissues, cells, and organelles by penetrating biological barriers and protecting the cargo from degradation. The nanocarrier-based gene delivery approach addresses challenges, such as collateral damage and inefficient DNA integration, and paves the way for the development of crops with desired traits. Future research should optimize nanocarriers for efficient and precise gene delivery while minimizing off-target effects. Sustainable, cost-effective materials can enhance large-scale agricultural applications, thereby revolutionizing crop production for global food security and advancing sustainable practices.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2025.04.012\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.04.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Nanomaterial-based gene delivery in plants: an upcoming genetic revolution?
Conventional gene-delivery methods in plant genetic engineering, such as electroporation and Agrobacterium-mediated transformation, face limitations such as species dependency, low efficiency, high cost, and undesirable DNA integration into the host genome. Integrating nanotechnology with existing molecular techniques offers a promising solution. Nanocarriers can precisely target tissues, cells, and organelles by penetrating biological barriers and protecting the cargo from degradation. The nanocarrier-based gene delivery approach addresses challenges, such as collateral damage and inefficient DNA integration, and paves the way for the development of crops with desired traits. Future research should optimize nanocarriers for efficient and precise gene delivery while minimizing off-target effects. Sustainable, cost-effective materials can enhance large-scale agricultural applications, thereby revolutionizing crop production for global food security and advancing sustainable practices.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.