Yu-Hsiang Yu, Duncan B Crosbie, Macarena Marín Arancibia
{"title":"Pseudomonas in the spotlight: emerging roles in the nodule microbiome.","authors":"Yu-Hsiang Yu, Duncan B Crosbie, Macarena Marín Arancibia","doi":"10.1016/j.tplants.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.002","url":null,"abstract":"<p><p>While rhizobia have long been recognised as the primary colonisers of legume nodules, microbiome studies have revealed the presence of other bacteria in these organs. This opinion delves into the factors shaping the nodule microbiome and explores the potential roles of non-rhizobial endophytes, focusing particularly on Pseudomonas as prominent players. We explore the mechanisms by which Pseudomonas colonise nodules, their interactions with rhizobia, and their remarkable potential to promote plant growth and protect against pathogens. Furthermore, we discuss the promising prospects of using Pseudomonas as inoculants alongside rhizobia to enhance crop growth and promote sustainable agricultural practices.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel mechanism promoting lipid droplet formation.","authors":"Zheng Yang, Meng Zhang, Chang Du","doi":"10.1016/j.tplants.2024.12.010","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.010","url":null,"abstract":"<p><p>Recently, Torres-Romero et al. identified a novel lipid droplet (LD)-associated protein, α/β-hydrolase domain containing protein 1 (ABHD1), in algae. Structurally, ABHD1 promotes the budding and growth of LDs and, functionally, it hydrolyzes lyso-diacylglyceryl-N,N,N-trimethylhomoserine (lyso-DGTS) to generate glyceryl-N,N,N-trimethylhomoserine (GTS) and free fatty acids (FFAs). Taken together, ABHD1 mediates a novel pathway for LD formation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fusion transcripts in plants: hidden layer of transcriptome complexity.","authors":"Simran Arora, Fiza Hamid, Shailesh Kumar","doi":"10.1016/j.tplants.2024.12.004","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.004","url":null,"abstract":"<p><p>In the realm of genetic information, fusion transcripts contribute to the intricate complexity of the transcriptome across various organisms. Recently, Cong et al. investigated these RNAs in rice, maize, soybean, and arabidopsis (Arabidopsis thaliana), revealing conserved characteristics. These findings enhance our understanding of the functional roles and evolutionary significance of these fusion transcripts.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niaz Ahmad, Muhammad Jawad Akbar Awan, Imran Amin, Shahid Mansoor
{"title":"Perfecting prime editing: achieving precise edits in dicots.","authors":"Niaz Ahmad, Muhammad Jawad Akbar Awan, Imran Amin, Shahid Mansoor","doi":"10.1016/j.tplants.2024.12.005","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.12.005","url":null,"abstract":"<p><p>Prime editing (PE), a precise CRISPR-based method, has worked well in some plants but faces challenges in dicots. Vu and colleagues developed new PE tools that greatly improve PE efficiency in dicots, enabling accurate, heritable genome edits. This advance marks a breakthrough that could revolutionize crop improvement and plant biotechnology.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-01-01Epub Date: 2024-10-14DOI: 10.1016/j.tplants.2024.09.004
Oscar Joubert, Gontran Arnault, Matthieu Barret, Marie Simonin
{"title":"Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering.","authors":"Oscar Joubert, Gontran Arnault, Matthieu Barret, Marie Simonin","doi":"10.1016/j.tplants.2024.09.004","DOIUrl":"10.1016/j.tplants.2024.09.004","url":null,"abstract":"<p><p>Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"21-34"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-01-01Epub Date: 2024-08-26DOI: 10.1016/j.tplants.2024.07.018
Frank Hochholdinger, Peng Yu
{"title":"Molecular concepts to explain heterosis in crops.","authors":"Frank Hochholdinger, Peng Yu","doi":"10.1016/j.tplants.2024.07.018","DOIUrl":"10.1016/j.tplants.2024.07.018","url":null,"abstract":"<p><p>Heterosis describes the superior performance of hybrid plants compared with their genetically distinct parents and is a pillar of global food security. Here we review the current status of the molecular dissection of heterosis. We discuss how extensive intraspecific structural genomic variation between parental genotypes leads to heterosis by genetic complementation in hybrids. Moreover, we survey how global gene expression complementation contributes to heterosis by hundreds of additionally active genes in hybrids and how overdominant single genes mediate heterosis in several species. Furthermore, we highlight the prominent role of the microbiome in improving the performance of hybrids. Taken together, the molecular understanding of heterosis will pave the way to accelerate hybrid productivity and a more sustainable agriculture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"95-104"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-01-01Epub Date: 2024-10-07DOI: 10.1016/j.tplants.2024.09.013
Defeng Shen, Ton Bisseling
{"title":"Soybean breeders can count on nodules.","authors":"Defeng Shen, Ton Bisseling","doi":"10.1016/j.tplants.2024.09.013","DOIUrl":"10.1016/j.tplants.2024.09.013","url":null,"abstract":"<p><p>Soybean, the most important legume crop, plays a crucial role in food security and sustainable agriculture. Recently, Zhong et al. demonstrated that a moderate increase in nodule number in soybean improves field yield and protein content. Their findings propose a potential strategy to enhance yield performance in other legume crops.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"10-12"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-01-01Epub Date: 2024-08-20DOI: 10.1016/j.tplants.2024.07.017
Esther Ndumi Ngumbi
{"title":"Could flooding undermine progress in building climate-resilient crops?","authors":"Esther Ndumi Ngumbi","doi":"10.1016/j.tplants.2024.07.017","DOIUrl":"10.1016/j.tplants.2024.07.017","url":null,"abstract":"<p><p>Flooding threatens crop productivity, agricultural sustainability, and global food security. In this article I review the effects of flooding on plants and highlight three important gaps in our understanding: (i) effects of flooding on ecological interactions mediated by plants both below (changing root metabolites and exudates) and aboveground (changing plant quality and metabolites, and weakening the plant immune system), (ii) flooding impacts on soil health and microorganisms that underpin plant and ecosystems health, and (iii) the legacy impacts of flooding. Failure to address these overlooked aspects could derail and undermine the monumental progress made in building climate-resilient crops and soil-microbe-assisted plant resilience. Addressing the outlined knowledge gaps will enhance solutions developed to mitigate flooding and preserve gains made to date.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"85-94"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-01-01Epub Date: 2024-10-01DOI: 10.1016/j.tplants.2024.08.003
Yan Yu, Vasileios Fotopoulos, Kejin Zhou, Alisdair R Fernie
{"title":"The role of gasotransmitter hydrogen sulfide in plant cadmium stress responses.","authors":"Yan Yu, Vasileios Fotopoulos, Kejin Zhou, Alisdair R Fernie","doi":"10.1016/j.tplants.2024.08.003","DOIUrl":"10.1016/j.tplants.2024.08.003","url":null,"abstract":"<p><p>Cadmium (Cd) is a toxic heavy metal that poses a significant risk to both plant growth and human health. To mitigate or lessen Cd toxicity, plants have evolved a wide range of sensing and defense strategies. The gasotransmitter hydrogen sulfide (H<sub>2</sub>S) is involved in plant responses to Cd stress and exhibits a crucial role in modulating Cd tolerance through a well-orchestrated interaction with several signaling pathways. Here, we review potential experimental approaches to manipulate H<sub>2</sub>S signals, concluding that research on another gasotransmitter, namely nitric oxide (NO), serves as a good model for research on H<sub>2</sub>S. Additionally, we discuss potential strategies to leverage H<sub>2</sub>S-reguated Cd tolerance to improve plant performance under Cd stress.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"35-53"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trends in Plant SciencePub Date : 2025-01-01Epub Date: 2024-10-11DOI: 10.1016/j.tplants.2024.09.005
Gen-Ichiro Arimura, Takuya Uemura
{"title":"Cracking the plant VOC sensing code and its practical applications.","authors":"Gen-Ichiro Arimura, Takuya Uemura","doi":"10.1016/j.tplants.2024.09.005","DOIUrl":"10.1016/j.tplants.2024.09.005","url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) are essential airborne mediators of interactions between plants. These plant-plant interactions require sophisticated VOC-sensing mechanisms that enable plants to regulate their defenses against pests. However, these interactions are not limited to specific plants or even conspecifics, and can function in very flexible interactions between plants. Sensing and responding to VOCs in plants is finely controlled by their uptake and transport systems as well as by cellular signaling via, for example, chromatin remodeling system-based transcriptional regulation for defense gene activation. Based on the accumulated knowledge about the interactions between plants and their major VOCs, companion plants and biostimulants are being developed for practical applications in agricultural and horticultural pest control, providing a sustainable alternative to harmful chemicals.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"105-115"},"PeriodicalIF":17.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}