{"title":"NO:从植物免疫到真菌毒力因子。","authors":"Stefania Vitale, David Turrà","doi":"10.1016/j.tplants.2025.03.021","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally viewed as a plant defense molecule, nitric oxide (NO) has now been shown to play a key role in fungal pathogenesis. A recent study by Zhang et al. reveals that banana pathogenic isolates of Fusarium oxysporum coordinate NO production with host defense responses through an accessory mitochondrial pathway within its genome.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"699-701"},"PeriodicalIF":17.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NO: from plant immunity to fungal virulence factor.\",\"authors\":\"Stefania Vitale, David Turrà\",\"doi\":\"10.1016/j.tplants.2025.03.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally viewed as a plant defense molecule, nitric oxide (NO) has now been shown to play a key role in fungal pathogenesis. A recent study by Zhang et al. reveals that banana pathogenic isolates of Fusarium oxysporum coordinate NO production with host defense responses through an accessory mitochondrial pathway within its genome.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"699-701\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2025.03.021\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.03.021","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
NO: from plant immunity to fungal virulence factor.
Traditionally viewed as a plant defense molecule, nitric oxide (NO) has now been shown to play a key role in fungal pathogenesis. A recent study by Zhang et al. reveals that banana pathogenic isolates of Fusarium oxysporum coordinate NO production with host defense responses through an accessory mitochondrial pathway within its genome.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.