Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software.

IF 17.3 1区 生物学 Q1 PLANT SCIENCES
Trends in Plant Science Pub Date : 2025-07-01 Epub Date: 2025-01-30 DOI:10.1016/j.tplants.2024.12.009
José Crossa, Johannes W R Martini, Paolo Vitale, Paulino Pérez-Rodríguez, Germano Costa-Neto, Roberto Fritsche-Neto, Daniel Runcie, Jaime Cuevas, Fernando Toledo, H Li, Pasquale De Vita, Guillermo Gerard, Susanne Dreisigacker, Leonardo Crespo-Herrera, Carolina Saint Pierre, Alison Bentley, Morten Lillemo, Rodomiro Ortiz, Osval A Montesinos-López, Abelardo Montesinos-López
{"title":"Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software.","authors":"José Crossa, Johannes W R Martini, Paolo Vitale, Paulino Pérez-Rodríguez, Germano Costa-Neto, Roberto Fritsche-Neto, Daniel Runcie, Jaime Cuevas, Fernando Toledo, H Li, Pasquale De Vita, Guillermo Gerard, Susanne Dreisigacker, Leonardo Crespo-Herrera, Carolina Saint Pierre, Alison Bentley, Morten Lillemo, Rodomiro Ortiz, Osval A Montesinos-López, Abelardo Montesinos-López","doi":"10.1016/j.tplants.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>With growing evidence that genomic selection (GS) improves genetic gains in plant breeding, it is timely to review the key factors that improve its efficiency. In this feature review, we focus on the statistical machine learning (ML) methods and software that are democratizing GS methodology. We outline the principles of genomic-enabled prediction and discuss how statistical ML tools enhance GS efficiency with big data. Additionally, we examine various statistical ML tools developed in recent years for predicting traits across continuous, binary, categorical, and count phenotypes. We highlight the unique advantages of deep learning (DL) models used in genomic prediction (GP). Finally, we review software developed to democratize the use of GP models and recent data management tools that support the adoption of GS methodology.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"756-774"},"PeriodicalIF":17.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.12.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With growing evidence that genomic selection (GS) improves genetic gains in plant breeding, it is timely to review the key factors that improve its efficiency. In this feature review, we focus on the statistical machine learning (ML) methods and software that are democratizing GS methodology. We outline the principles of genomic-enabled prediction and discuss how statistical ML tools enhance GS efficiency with big data. Additionally, we examine various statistical ML tools developed in recent years for predicting traits across continuous, binary, categorical, and count phenotypes. We highlight the unique advantages of deep learning (DL) models used in genomic prediction (GP). Finally, we review software developed to democratize the use of GP models and recent data management tools that support the adoption of GS methodology.

扩大植物育种中的基因组预测:利用大数据、机器学习和先进的软件。
随着越来越多的证据表明基因组选择(GS)提高了植物育种的遗传收益,对提高其效率的关键因素进行综述是及时的。在这篇专题综述中,我们将重点介绍使GS方法民主化的统计机器学习(ML)方法和软件。我们概述了基因组预测的原理,并讨论了统计ML工具如何利用大数据提高GS效率。此外,我们研究了近年来开发的各种统计机器学习工具,用于预测连续型、二元型、分类型和计数表型的性状。我们强调了基因组预测(GP)中使用的深度学习(DL)模型的独特优势。最后,我们回顾了为普及GP模型使用而开发的软件和支持采用GS方法的最新数据管理工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信