Xiaoman You, Jisong Wang, Guo-Liang Wang, Yuese Ning
{"title":"E3泛素连接酶的破坏赋予疾病抗性。","authors":"Xiaoman You, Jisong Wang, Guo-Liang Wang, Yuese Ning","doi":"10.1016/j.tplants.2025.06.007","DOIUrl":null,"url":null,"abstract":"<p><p>Huanglongbing (HLB) is a devastating disease of citrus. In a recent study, Zhao et al. found that the CLas effector SDE5 targets a susceptibility (S) factor, E3 ubiquitin ligase PUB21, which degrades MYC2 to inhibit HLB resistance. The dominant negative mutant PUB21DN and artificial intelligence (AI)-designed antiproteolysis peptides (APPs) block PUB21, stabilizing MYC2 and conferring HLB resistance.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disruption of E3 ubiquitin ligase confers disease resistance.\",\"authors\":\"Xiaoman You, Jisong Wang, Guo-Liang Wang, Yuese Ning\",\"doi\":\"10.1016/j.tplants.2025.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Huanglongbing (HLB) is a devastating disease of citrus. In a recent study, Zhao et al. found that the CLas effector SDE5 targets a susceptibility (S) factor, E3 ubiquitin ligase PUB21, which degrades MYC2 to inhibit HLB resistance. The dominant negative mutant PUB21DN and artificial intelligence (AI)-designed antiproteolysis peptides (APPs) block PUB21, stabilizing MYC2 and conferring HLB resistance.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2025.06.007\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.06.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Disruption of E3 ubiquitin ligase confers disease resistance.
Huanglongbing (HLB) is a devastating disease of citrus. In a recent study, Zhao et al. found that the CLas effector SDE5 targets a susceptibility (S) factor, E3 ubiquitin ligase PUB21, which degrades MYC2 to inhibit HLB resistance. The dominant negative mutant PUB21DN and artificial intelligence (AI)-designed antiproteolysis peptides (APPs) block PUB21, stabilizing MYC2 and conferring HLB resistance.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.