Harro Bouwmeester, Lemeng Dong, Kathrin Wippel, Twan Hofland, Age Smilde
{"title":"The chemical interaction between plants and the rhizosphere microbiome.","authors":"Harro Bouwmeester, Lemeng Dong, Kathrin Wippel, Twan Hofland, Age Smilde","doi":"10.1016/j.tplants.2025.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Research into the interaction between plants and the soil microbiota has expanded rapidly and is unravelling a plethora of interactions between plants and their root microbiota. The rhizosphere exhibits remarkable chemical diversity, driven by an evolutionary arms race. Through these chemicals, plants shape the rhizosphere microbiome using different mechanisms: organic carbon provision, antimicrobial compound production, and exudation of microbiota recruitment signals. Modern high-input agriculture may have diminished the role of natural chemical interactions and modern crops may have lost some of the relevant traits. As our understanding of root-rhizosphere interactions grows, harnessing natural mechanisms for agricultural sustainability becomes increasingly viable, potentially helping agriculture to counteract growing challenges from environmental stresses, climate change, and rising input costs.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.06.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Research into the interaction between plants and the soil microbiota has expanded rapidly and is unravelling a plethora of interactions between plants and their root microbiota. The rhizosphere exhibits remarkable chemical diversity, driven by an evolutionary arms race. Through these chemicals, plants shape the rhizosphere microbiome using different mechanisms: organic carbon provision, antimicrobial compound production, and exudation of microbiota recruitment signals. Modern high-input agriculture may have diminished the role of natural chemical interactions and modern crops may have lost some of the relevant traits. As our understanding of root-rhizosphere interactions grows, harnessing natural mechanisms for agricultural sustainability becomes increasingly viable, potentially helping agriculture to counteract growing challenges from environmental stresses, climate change, and rising input costs.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.