Progress in molecular biology and translational science最新文献

筛选
英文 中文
Structural biology of SARS-CoV-2 SARS-CoV-2 的结构生物学
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-03 DOI: 10.1016/bs.pmbts.2023.11.001
Asiya Kamber Zaidi, Sunny Dawoodi
{"title":"Structural biology of SARS-CoV-2","authors":"Asiya Kamber Zaidi, Sunny Dawoodi","doi":"10.1016/bs.pmbts.2023.11.001","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2023.11.001","url":null,"abstract":"<p><span></span>This chapter provides a comprehensive overview of the techniques employed to unravel the structural biology of SARS-CoV-2, facilitating a deeper understanding of the virus for developing future therapeutic strategies. Various techniques such as Electron microscopy (EM) for capturing high-resolution images of the virus and X-ray crystallography used for determining atomic-level structures of viral proteins are discussed. Cryo-electron microscopy (cryo-EM) imaging is also examined as a powerful tool for visualizing the virus's structure in its native state. Intracellular detection and tracking of SARS-CoV-2 are discussed, highlighting the techniques employed to study the virus's behavior within host cells. The chapter further explores how cryo-EM has been instrumental in delivering high-quality structural information on SARS-CoV-2, enabling researchers to better understand its mechanisms of infection and replication. The structural visualization of SARS-CoV-2 is then presented, focusing on key components such as the spike protein structure, RNA polymerase structure, and the visualization of <span></span>intact and in-situ virions using cryo-electron tomography (cryo-ET). Lastly, the chapter touches upon the application of nuclear magnetic resonance (NMR) spectroscopy for studying the dynamics and interactions of viral proteins</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long Covid Long Covid
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-03 DOI: 10.1016/bs.pmbts.2023.11.002
Asiya Kamber Zaidi, Puya Dehgani-Mobaraki
{"title":"Long Covid","authors":"Asiya Kamber Zaidi, Puya Dehgani-Mobaraki","doi":"10.1016/bs.pmbts.2023.11.002","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2023.11.002","url":null,"abstract":"<p><span></span>Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), refers to a constellation of persistent symptoms and health issues that continue beyond the acute phase of COVID-19. This chapter provides an overview of the pathogenesis, risk factors, manifestations, major findings, and diagnosis and treatment strategies associated with Long COVID. Hypotheses regarding the pathogenesis of Long COVID are discussed, encompassing various factors such as persistent viral reservoirs, immune dysregulation with or without reactivation of herpesviruses (e.g., Epstein-Barr Virus and human herpesvirus), dysbiosis, autoimmunity triggered by infection, endothelial dysfunction, microvessel blood clotting, and dysfunctional brainstem and/or vagal signaling. The chapter also highlights the risk factors associated with Long COVID and its occurrence in children. The major findings of Long COVID, including immune dysregulation, vessel and tissue damage, neurological and cognitive pathology, eye symptoms, endocrinal issues, myalgic encephalomyelitis and <span></span>chronic fatigue syndrome, reproductive system involvement, respiratory and gastrointestinal symptoms, and the chronology of symptoms, are thoroughly explored. Lastly, the chapter discusses the challenges and current approaches in the diagnosis and treatment of Long COVID, emphasizing the need for multidisciplinary care and individualized management strategies.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in CRISPR-Cas systems for gut microbiome. 用于肠道微生物组的 CRISPR-Cas 系统的进展。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-08-22 DOI: 10.1016/bs.pmbts.2024.07.008
Namra Ali, Chaitali Vora, Anshu Mathuria, Naina Kataria, Indra Mani
{"title":"Advances in CRISPR-Cas systems for gut microbiome.","authors":"Namra Ali, Chaitali Vora, Anshu Mathuria, Naina Kataria, Indra Mani","doi":"10.1016/bs.pmbts.2024.07.008","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.008","url":null,"abstract":"<p><p>CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"208 ","pages":"59-81"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of adjuvants boosts cancer vaccines. 合理设计佐剂可提高癌症疫苗的疗效。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-03-22 DOI: 10.1016/bs.pmbts.2024.03.001
Xia Li, Tomohiko Yamazaki, Mitsuhiro Ebara, Naoto Shirahata, Nobutaka Hanagata
{"title":"Rational design of adjuvants boosts cancer vaccines.","authors":"Xia Li, Tomohiko Yamazaki, Mitsuhiro Ebara, Naoto Shirahata, Nobutaka Hanagata","doi":"10.1016/bs.pmbts.2024.03.001","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.001","url":null,"abstract":"<p><p>Cancer vaccines are expected to be next breakthrough in cancer immunotherapy. In cancer vaccines, adjuvants play an important role by enhancing and reshaping tumor antigen-specific immune responses. Failures in previous cancer vaccine clinical trials can be attributed to inappropriate selection and design of tumor antigens and adjuvants. Using basic theories of tumor immunology, the development of sequencing technology and nanotechnology enables the creation of cancer vaccines through appropriate selection of tumor antigens and adjuvants and their nanoscale assembly based on the specific characteristics of each tumor. In this chapter, we begin by discussing the various types of cancer vaccines and categories of tumor antigens. Then, we summarize the classification of adjuvants for cancer vaccines, including immunostimulatory molecules and delivery systems, and clarify the various factors that influence the properties of adjuvants, such as chemical composition, structure, and surface modification. Finally, we provide perspectives and insights on rational design of adjuvants in cancer vaccines to enhance their efficacy.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"101-125"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance? 癌症免疫疗法中的非编码 RNA:克服免疫耐受的解决方案?
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-03-31 DOI: 10.1016/bs.pmbts.2024.02.003
Fatemeh Afra, Seyed Parsa Eftekhar, Amir Salehi Farid, Moein Ala
{"title":"Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance?","authors":"Fatemeh Afra, Seyed Parsa Eftekhar, Amir Salehi Farid, Moein Ala","doi":"10.1016/bs.pmbts.2024.02.003","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.02.003","url":null,"abstract":"<p><p>With the rapid advancement in immunotherapy, cancer immune resistance has become more evident, which demands new treatment approaches to achieve greater efficacy. Non-coding RNAs (ncRNAs) are a heterogeneous group of RNAs that are not translated to proteins but instead regulate different stages of gene expression. Recent studies have increasingly supported the critical role of ncRNAs in immune cell-cancer cell cross-talk, and numerous ncRNAs have been implicated in the immune evasion of cancer cells. Cancer cells take advantage of ncRNAs to modulate several signaling pathways and upregulate the expression of immune checkpoints and anti-inflammatory mediators, thereby dampening the anti-tumor response of M1 macrophages, dendritic cells, cytotoxic T cells, and natural killer cells or potentiating the immunosuppressive properties of M2 macrophages, regulatory T cells, and myeloid-derived suppressive cells. Upregulation of immunosuppressive ncRNAs or downregulation of immunogenic ncNRAs is a major driver of resistance to immune checkpoint inhibitors, cancer vaccines, and other means of cancer immunotherapy, making ncRNAs ideal targets for treatment. In addition, ncRNAs released by cancer cells have been demonstrated to possess prognostic values for patients who undergo cancer immunotherapy. Future clinical trials are urged to consider the potential of ncRNAs in cancer immunotherapy.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"215-240"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA therapeutics for diarrhea. 治疗腹泻的 RNA 疗法。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-01-24 DOI: 10.1016/bs.pmbts.2023.12.004
Duy Ha Nguyen, Md Jamal Uddin, Jaffar A Al-Tawfiq, Ziad A Memish, Dinh-Toi Chu
{"title":"RNA therapeutics for diarrhea.","authors":"Duy Ha Nguyen, Md Jamal Uddin, Jaffar A Al-Tawfiq, Ziad A Memish, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.004","DOIUrl":"10.1016/bs.pmbts.2023.12.004","url":null,"abstract":"<p><p>Diarrhea is caused by a variety of bacterial and viral agents, inflammatory conditions, medications, and hereditary conditions. Secretory diarrhea involves several ion and solute transporters, activation of the cyclic nucleotide and Ca<sup>2+</sup> signaling pathways, as well as intestinal epithelial secretion. In many cases of secretory diarrhea, activation of Cl<sup>-</sup> channels, such as the cystic transmembrane conduction regulator and the Ca<sup>2+</sup>stimulated Cl<sup>-</sup> channel fibrosis, promote secretion while concurrently inhibiting Na<sup>+</sup> transport expressing fluid absorption. Current diarrhea therapies include rehydration and electrolyte replacement via oral rehydration solutions, as well as medications that target peristalsis or fluid secretion. The rising understanding of RNA function and its importance in illness has encouraged the use of various RNAs to operate selectively on \"untreatable\" proteins, transcripts, and genes. Some RNA-based medications have received clinical approval, while others are currently in research or preclinical studies. Despite major obstacles in the development of RNA-based therapies, many approaches have been investigated to improve intracellular RNA trafficking and metabolic stability.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"295-309"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Each big journey starts with a first step: Importance of oligomerization. 每一段伟大的旅程都始于第一步:低聚的重要性
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-03-31 DOI: 10.1016/bs.pmbts.2024.03.011
Mansoureh Mirza Agha, Fatemeh Aziziyan, Vladimir N Uversky
{"title":"Each big journey starts with a first step: Importance of oligomerization.","authors":"Mansoureh Mirza Agha, Fatemeh Aziziyan, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.011","DOIUrl":"10.1016/bs.pmbts.2024.03.011","url":null,"abstract":"<p><p>Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"111-141"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic approaches in proteinopathies. 蛋白质病的治疗方法。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-04-04 DOI: 10.1016/bs.pmbts.2024.03.008
Mohsen Nabi Afjadi, Bahareh Dabirmanesh, Vladimir N Uversky
{"title":"Therapeutic approaches in proteinopathies.","authors":"Mohsen Nabi Afjadi, Bahareh Dabirmanesh, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.008","DOIUrl":"10.1016/bs.pmbts.2024.03.008","url":null,"abstract":"<p><p>A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"341-388"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in CRISPR-Cas systems for human bacterial disease. 用于人类细菌疾病的 CRISPR-Cas 系统的进展。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-08-21 DOI: 10.1016/bs.pmbts.2024.07.013
Anshu Mathuria, Chaitali Vora, Namra Ali, Indra Mani
{"title":"Advances in CRISPR-Cas systems for human bacterial disease.","authors":"Anshu Mathuria, Chaitali Vora, Namra Ali, Indra Mani","doi":"10.1016/bs.pmbts.2024.07.013","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.013","url":null,"abstract":"<p><p>Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"208 ","pages":"19-41"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An update on the therapeutic role of RNAi in NAFLD/NASH. RNAi在非酒精性脂肪肝/NASH中的最新治疗作用。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2023-12-29 DOI: 10.1016/bs.pmbts.2023.12.005
Hamideh Dehghan, Alireza Ghasempour, Mahboobeh Sabeti Akbar-Abad, Zahra Khademi, Mahsa Sedighi, Tannaz Jamialahmadi, Amirhossein Sahebkar
{"title":"An update on the therapeutic role of RNAi in NAFLD/NASH.","authors":"Hamideh Dehghan, Alireza Ghasempour, Mahboobeh Sabeti Akbar-Abad, Zahra Khademi, Mahsa Sedighi, Tannaz Jamialahmadi, Amirhossein Sahebkar","doi":"10.1016/bs.pmbts.2023.12.005","DOIUrl":"10.1016/bs.pmbts.2023.12.005","url":null,"abstract":"<p><p>Unhealthy lifestyles have given rise to a growing epidemic of metabolic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). NAFLD often occurs as a consequence of obesity, and currently, there is no FDA-approved drug for its treatment. However, therapeutic oligonucleotides, such as RNA interference (RNAi), represent a promising class of pharmacotherapy that can target previously untreatable conditions. The potential significance of RNAi in maintaining physiological homeostasis, understanding pathogenesis, and improving metabolic liver diseases, including NAFLD, is discussed in this article. We explore why NAFLD/NASH is an ideal target for therapeutic oligonucleotides and provide insights into the delivery platforms of RNAi and its therapeutic role in addressing NAFLD/NASH.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"45-67"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信