{"title":"SARS-CoV-2 的结构生物学","authors":"Asiya Kamber Zaidi, Sunny Dawoodi","doi":"10.1016/bs.pmbts.2023.11.001","DOIUrl":null,"url":null,"abstract":"<p><span></span>This chapter provides a comprehensive overview of the techniques employed to unravel the structural biology of SARS-CoV-2, facilitating a deeper understanding of the virus for developing future therapeutic strategies. Various techniques such as Electron microscopy (EM) for capturing high-resolution images of the virus and X-ray crystallography used for determining atomic-level structures of viral proteins are discussed. Cryo-electron microscopy (cryo-EM) imaging is also examined as a powerful tool for visualizing the virus's structure in its native state. Intracellular detection and tracking of SARS-CoV-2 are discussed, highlighting the techniques employed to study the virus's behavior within host cells. The chapter further explores how cryo-EM has been instrumental in delivering high-quality structural information on SARS-CoV-2, enabling researchers to better understand its mechanisms of infection and replication. The structural visualization of SARS-CoV-2 is then presented, focusing on key components such as the spike protein structure, RNA polymerase structure, and the visualization of <span></span>intact and in-situ virions using cryo-electron tomography (cryo-ET). Lastly, the chapter touches upon the application of nuclear magnetic resonance (NMR) spectroscopy for studying the dynamics and interactions of viral proteins</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural biology of SARS-CoV-2\",\"authors\":\"Asiya Kamber Zaidi, Sunny Dawoodi\",\"doi\":\"10.1016/bs.pmbts.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><span></span>This chapter provides a comprehensive overview of the techniques employed to unravel the structural biology of SARS-CoV-2, facilitating a deeper understanding of the virus for developing future therapeutic strategies. Various techniques such as Electron microscopy (EM) for capturing high-resolution images of the virus and X-ray crystallography used for determining atomic-level structures of viral proteins are discussed. Cryo-electron microscopy (cryo-EM) imaging is also examined as a powerful tool for visualizing the virus's structure in its native state. Intracellular detection and tracking of SARS-CoV-2 are discussed, highlighting the techniques employed to study the virus's behavior within host cells. The chapter further explores how cryo-EM has been instrumental in delivering high-quality structural information on SARS-CoV-2, enabling researchers to better understand its mechanisms of infection and replication. The structural visualization of SARS-CoV-2 is then presented, focusing on key components such as the spike protein structure, RNA polymerase structure, and the visualization of <span></span>intact and in-situ virions using cryo-electron tomography (cryo-ET). Lastly, the chapter touches upon the application of nuclear magnetic resonance (NMR) spectroscopy for studying the dynamics and interactions of viral proteins</p>\",\"PeriodicalId\":21157,\"journal\":{\"name\":\"Progress in molecular biology and translational science\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular biology and translational science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2023.11.001\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2023.11.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
This chapter provides a comprehensive overview of the techniques employed to unravel the structural biology of SARS-CoV-2, facilitating a deeper understanding of the virus for developing future therapeutic strategies. Various techniques such as Electron microscopy (EM) for capturing high-resolution images of the virus and X-ray crystallography used for determining atomic-level structures of viral proteins are discussed. Cryo-electron microscopy (cryo-EM) imaging is also examined as a powerful tool for visualizing the virus's structure in its native state. Intracellular detection and tracking of SARS-CoV-2 are discussed, highlighting the techniques employed to study the virus's behavior within host cells. The chapter further explores how cryo-EM has been instrumental in delivering high-quality structural information on SARS-CoV-2, enabling researchers to better understand its mechanisms of infection and replication. The structural visualization of SARS-CoV-2 is then presented, focusing on key components such as the spike protein structure, RNA polymerase structure, and the visualization of intact and in-situ virions using cryo-electron tomography (cryo-ET). Lastly, the chapter touches upon the application of nuclear magnetic resonance (NMR) spectroscopy for studying the dynamics and interactions of viral proteins
期刊介绍:
Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.