{"title":"用于肠道微生物组的 CRISPR-Cas 系统的进展。","authors":"Namra Ali, Chaitali Vora, Anshu Mathuria, Naina Kataria, Indra Mani","doi":"10.1016/bs.pmbts.2024.07.008","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"208 ","pages":"59-81"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in CRISPR-Cas systems for gut microbiome.\",\"authors\":\"Namra Ali, Chaitali Vora, Anshu Mathuria, Naina Kataria, Indra Mani\",\"doi\":\"10.1016/bs.pmbts.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.</p>\",\"PeriodicalId\":21157,\"journal\":{\"name\":\"Progress in molecular biology and translational science\",\"volume\":\"208 \",\"pages\":\"59-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular biology and translational science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2024.07.008\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.07.008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Advances in CRISPR-Cas systems for gut microbiome.
CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.
期刊介绍:
Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.