Progress in molecular biology and translational science最新文献

筛选
英文 中文
Rational design of adjuvants boosts cancer vaccines. 合理设计佐剂可提高癌症疫苗的疗效。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-03-22 DOI: 10.1016/bs.pmbts.2024.03.001
Xia Li, Tomohiko Yamazaki, Mitsuhiro Ebara, Naoto Shirahata, Nobutaka Hanagata
{"title":"Rational design of adjuvants boosts cancer vaccines.","authors":"Xia Li, Tomohiko Yamazaki, Mitsuhiro Ebara, Naoto Shirahata, Nobutaka Hanagata","doi":"10.1016/bs.pmbts.2024.03.001","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.001","url":null,"abstract":"<p><p>Cancer vaccines are expected to be next breakthrough in cancer immunotherapy. In cancer vaccines, adjuvants play an important role by enhancing and reshaping tumor antigen-specific immune responses. Failures in previous cancer vaccine clinical trials can be attributed to inappropriate selection and design of tumor antigens and adjuvants. Using basic theories of tumor immunology, the development of sequencing technology and nanotechnology enables the creation of cancer vaccines through appropriate selection of tumor antigens and adjuvants and their nanoscale assembly based on the specific characteristics of each tumor. In this chapter, we begin by discussing the various types of cancer vaccines and categories of tumor antigens. Then, we summarize the classification of adjuvants for cancer vaccines, including immunostimulatory molecules and delivery systems, and clarify the various factors that influence the properties of adjuvants, such as chemical composition, structure, and surface modification. Finally, we provide perspectives and insights on rational design of adjuvants in cancer vaccines to enhance their efficacy.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"101-125"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance? 癌症免疫疗法中的非编码 RNA:克服免疫耐受的解决方案?
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-03-31 DOI: 10.1016/bs.pmbts.2024.02.003
Fatemeh Afra, Seyed Parsa Eftekhar, Amir Salehi Farid, Moein Ala
{"title":"Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance?","authors":"Fatemeh Afra, Seyed Parsa Eftekhar, Amir Salehi Farid, Moein Ala","doi":"10.1016/bs.pmbts.2024.02.003","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.02.003","url":null,"abstract":"<p><p>With the rapid advancement in immunotherapy, cancer immune resistance has become more evident, which demands new treatment approaches to achieve greater efficacy. Non-coding RNAs (ncRNAs) are a heterogeneous group of RNAs that are not translated to proteins but instead regulate different stages of gene expression. Recent studies have increasingly supported the critical role of ncRNAs in immune cell-cancer cell cross-talk, and numerous ncRNAs have been implicated in the immune evasion of cancer cells. Cancer cells take advantage of ncRNAs to modulate several signaling pathways and upregulate the expression of immune checkpoints and anti-inflammatory mediators, thereby dampening the anti-tumor response of M1 macrophages, dendritic cells, cytotoxic T cells, and natural killer cells or potentiating the immunosuppressive properties of M2 macrophages, regulatory T cells, and myeloid-derived suppressive cells. Upregulation of immunosuppressive ncRNAs or downregulation of immunogenic ncNRAs is a major driver of resistance to immune checkpoint inhibitors, cancer vaccines, and other means of cancer immunotherapy, making ncRNAs ideal targets for treatment. In addition, ncRNAs released by cancer cells have been demonstrated to possess prognostic values for patients who undergo cancer immunotherapy. Future clinical trials are urged to consider the potential of ncRNAs in cancer immunotherapy.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"215-240"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA therapeutics for diarrhea. 治疗腹泻的 RNA 疗法。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-01-24 DOI: 10.1016/bs.pmbts.2023.12.004
Duy Ha Nguyen, Md Jamal Uddin, Jaffar A Al-Tawfiq, Ziad A Memish, Dinh-Toi Chu
{"title":"RNA therapeutics for diarrhea.","authors":"Duy Ha Nguyen, Md Jamal Uddin, Jaffar A Al-Tawfiq, Ziad A Memish, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.004","DOIUrl":"10.1016/bs.pmbts.2023.12.004","url":null,"abstract":"<p><p>Diarrhea is caused by a variety of bacterial and viral agents, inflammatory conditions, medications, and hereditary conditions. Secretory diarrhea involves several ion and solute transporters, activation of the cyclic nucleotide and Ca<sup>2+</sup> signaling pathways, as well as intestinal epithelial secretion. In many cases of secretory diarrhea, activation of Cl<sup>-</sup> channels, such as the cystic transmembrane conduction regulator and the Ca<sup>2+</sup>stimulated Cl<sup>-</sup> channel fibrosis, promote secretion while concurrently inhibiting Na<sup>+</sup> transport expressing fluid absorption. Current diarrhea therapies include rehydration and electrolyte replacement via oral rehydration solutions, as well as medications that target peristalsis or fluid secretion. The rising understanding of RNA function and its importance in illness has encouraged the use of various RNAs to operate selectively on \"untreatable\" proteins, transcripts, and genes. Some RNA-based medications have received clinical approval, while others are currently in research or preclinical studies. Despite major obstacles in the development of RNA-based therapies, many approaches have been investigated to improve intracellular RNA trafficking and metabolic stability.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"295-309"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Each big journey starts with a first step: Importance of oligomerization. 每一段伟大的旅程都始于第一步:低聚的重要性
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-03-31 DOI: 10.1016/bs.pmbts.2024.03.011
Mansoureh Mirza Agha, Fatemeh Aziziyan, Vladimir N Uversky
{"title":"Each big journey starts with a first step: Importance of oligomerization.","authors":"Mansoureh Mirza Agha, Fatemeh Aziziyan, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.011","DOIUrl":"10.1016/bs.pmbts.2024.03.011","url":null,"abstract":"<p><p>Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"111-141"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic approaches in proteinopathies. 蛋白质病的治疗方法。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-04-04 DOI: 10.1016/bs.pmbts.2024.03.008
Mohsen Nabi Afjadi, Bahareh Dabirmanesh, Vladimir N Uversky
{"title":"Therapeutic approaches in proteinopathies.","authors":"Mohsen Nabi Afjadi, Bahareh Dabirmanesh, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.008","DOIUrl":"10.1016/bs.pmbts.2024.03.008","url":null,"abstract":"<p><p>A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"341-388"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in CRISPR-Cas systems for human bacterial disease. 用于人类细菌疾病的 CRISPR-Cas 系统的进展。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-08-21 DOI: 10.1016/bs.pmbts.2024.07.013
Anshu Mathuria, Chaitali Vora, Namra Ali, Indra Mani
{"title":"Advances in CRISPR-Cas systems for human bacterial disease.","authors":"Anshu Mathuria, Chaitali Vora, Namra Ali, Indra Mani","doi":"10.1016/bs.pmbts.2024.07.013","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.013","url":null,"abstract":"<p><p>Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"208 ","pages":"19-41"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An update on the therapeutic role of RNAi in NAFLD/NASH. RNAi在非酒精性脂肪肝/NASH中的最新治疗作用。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2023-12-29 DOI: 10.1016/bs.pmbts.2023.12.005
Hamideh Dehghan, Alireza Ghasempour, Mahboobeh Sabeti Akbar-Abad, Zahra Khademi, Mahsa Sedighi, Tannaz Jamialahmadi, Amirhossein Sahebkar
{"title":"An update on the therapeutic role of RNAi in NAFLD/NASH.","authors":"Hamideh Dehghan, Alireza Ghasempour, Mahboobeh Sabeti Akbar-Abad, Zahra Khademi, Mahsa Sedighi, Tannaz Jamialahmadi, Amirhossein Sahebkar","doi":"10.1016/bs.pmbts.2023.12.005","DOIUrl":"10.1016/bs.pmbts.2023.12.005","url":null,"abstract":"<p><p>Unhealthy lifestyles have given rise to a growing epidemic of metabolic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). NAFLD often occurs as a consequence of obesity, and currently, there is no FDA-approved drug for its treatment. However, therapeutic oligonucleotides, such as RNA interference (RNAi), represent a promising class of pharmacotherapy that can target previously untreatable conditions. The potential significance of RNAi in maintaining physiological homeostasis, understanding pathogenesis, and improving metabolic liver diseases, including NAFLD, is discussed in this article. We explore why NAFLD/NASH is an ideal target for therapeutic oligonucleotides and provide insights into the delivery platforms of RNAi and its therapeutic role in addressing NAFLD/NASH.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"45-67"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental techniques for detecting and evaluating the amyloid fibrils. 检测和评估淀粉样纤维的实验技术。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-03-31 DOI: 10.1016/bs.pmbts.2024.03.004
Farnoosh Farzam, Bahareh Dabirmanesh
{"title":"Experimental techniques for detecting and evaluating the amyloid fibrils.","authors":"Farnoosh Farzam, Bahareh Dabirmanesh","doi":"10.1016/bs.pmbts.2024.03.004","DOIUrl":"10.1016/bs.pmbts.2024.03.004","url":null,"abstract":"<p><p>Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"183-227"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid-liquid phase separation as triggering factor of fibril formation. 液-液相分离是纤维形成的触发因素。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-04-04 DOI: 10.1016/bs.pmbts.2024.03.006
Fereshteh Ramezani Khorsand, Vladimir N Uversky
{"title":"Liquid-liquid phase separation as triggering factor of fibril formation.","authors":"Fereshteh Ramezani Khorsand, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.006","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.006","url":null,"abstract":"<p><p>Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"143-182"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current progress in CRISPR-Cas systems for autoimmune diseases. CRISPR-Cas 系统在治疗自身免疫性疾病方面的最新进展。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-08-14 DOI: 10.1016/bs.pmbts.2024.07.011
Juveriya Israr, Ajay Kumar
{"title":"Current progress in CRISPR-Cas systems for autoimmune diseases.","authors":"Juveriya Israr, Ajay Kumar","doi":"10.1016/bs.pmbts.2024.07.011","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.011","url":null,"abstract":"<p><p>A body develops an autoimmune illness when its immune system mistakenly targets healthy cells and organs. Eight million people are affected by more than 80 autoimmune diseases. The public's and individuals' well-being is put at risk. Type 1 diabetes, lupus, rheumatoid arthritis, and multiple sclerosisare autoimmune diseases. Tissue injury, nociceptive responses, and persistent inflammation are the results of these stresses. Concerns about healthcare costs, health, and physical limitations contribute to these issues. Given their prevalence, it is crucial to enhance our knowledge, conduct thorough research, and provide all-encompassing support to women dealing with autoimmune diseases. This will lead to better public health and better patient outcomes. Most bacteria's immune systems employ CRISPR-Cas, a state-of-the-art technique for editing genes. For Cas to break DNA with pinpoint accuracy, a guide RNA employs a predetermined enzymatic pathway. Genetic modifications started. After it was developed, this method was subjected to much research on autoimmune diseases. By modifying immune pathways, CRISPR gene editing can alleviate symptoms, promote immune system tolerance, and decrease autoimmune reactivity. The autoimmune diseases that CRISPR-Cas9 targets now have no treatment or cure. Results from early clinical trials and preclinical studies of autoimmune medicines engineered using CRISPR showed promise. Modern treatments for rheumatoid arthritis,multiple sclerosis, and type 1 diabetes aim to alter specific genetic or immune mechanisms. Accurate CRISPR editing can fix autoimmune genetic disorders. Modifying effector cells with CRISPR can decrease autoimmune reactions. These cells include cytotoxic T and B lymphocytes. Because of improvements in delivery techniques and kits, CRISPR medications are now safer, more effective, and more accurately targeted. It all comes down to intricate immunological reactions and unexpected side consequences. Revolutionary cures for autoimmune problems and highly personalized medical therapies have been made possible by recent advancements in CRISPR.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"208 ","pages":"231-259"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信