人工智能和机器学习启发式发现ncrna。

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Alfredo Benso, Gianfranco Politano
{"title":"人工智能和机器学习启发式发现ncrna。","authors":"Alfredo Benso, Gianfranco Politano","doi":"10.1016/bs.pmbts.2025.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has emerged as a powerful tool in molecular biology, significantly advancing the study of long non-coding RNAs (lncRNAs). This chapter examines the application of AI techniques, including machine learning (ML) and deep learning (DL), in predicting lncRNA functions, identifying disease associations, and annotating protein interactions. The discussion covers key methodologies such as supervised and unsupervised ML algorithms, recurrent neural networks (RNNs), convolutional neural networks (CNNs), and transformer-based models. A detailed description of a deep learning pipeline for functional annotation of lncRNA-binding proteins (lncRBPs) is provided, highlighting challenges in dataset preparation, model design, and usability. Integrating experimental validation with computational predictions is emphasized as a pathway to bridge AI-driven insights with biological understanding.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"214 ","pages":"145-162"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and machine learning heuristics for discovery of ncRNAs.\",\"authors\":\"Alfredo Benso, Gianfranco Politano\",\"doi\":\"10.1016/bs.pmbts.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) has emerged as a powerful tool in molecular biology, significantly advancing the study of long non-coding RNAs (lncRNAs). This chapter examines the application of AI techniques, including machine learning (ML) and deep learning (DL), in predicting lncRNA functions, identifying disease associations, and annotating protein interactions. The discussion covers key methodologies such as supervised and unsupervised ML algorithms, recurrent neural networks (RNNs), convolutional neural networks (CNNs), and transformer-based models. A detailed description of a deep learning pipeline for functional annotation of lncRNA-binding proteins (lncRBPs) is provided, highlighting challenges in dataset preparation, model design, and usability. Integrating experimental validation with computational predictions is emphasized as a pathway to bridge AI-driven insights with biological understanding.</p>\",\"PeriodicalId\":21157,\"journal\":{\"name\":\"Progress in molecular biology and translational science\",\"volume\":\"214 \",\"pages\":\"145-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular biology and translational science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2025.01.002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2025.01.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)已经成为分子生物学的一个强大工具,极大地推动了长链非编码rna (lncRNAs)的研究。本章探讨了人工智能技术在预测lncRNA功能、识别疾病关联和注释蛋白质相互作用方面的应用,包括机器学习(ML)和深度学习(DL)。讨论涵盖了关键方法,如监督和无监督ML算法、循环神经网络(rnn)、卷积神经网络(cnn)和基于变压器的模型。提供了lncrna结合蛋白(lncrbp)功能注释的深度学习管道的详细描述,突出了数据集准备,模型设计和可用性方面的挑战。将实验验证与计算预测相结合被强调为连接人工智能驱动的见解与生物学理解的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence and machine learning heuristics for discovery of ncRNAs.

Artificial intelligence (AI) has emerged as a powerful tool in molecular biology, significantly advancing the study of long non-coding RNAs (lncRNAs). This chapter examines the application of AI techniques, including machine learning (ML) and deep learning (DL), in predicting lncRNA functions, identifying disease associations, and annotating protein interactions. The discussion covers key methodologies such as supervised and unsupervised ML algorithms, recurrent neural networks (RNNs), convolutional neural networks (CNNs), and transformer-based models. A detailed description of a deep learning pipeline for functional annotation of lncRNA-binding proteins (lncRBPs) is provided, highlighting challenges in dataset preparation, model design, and usability. Integrating experimental validation with computational predictions is emphasized as a pathway to bridge AI-driven insights with biological understanding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信