Peptidomimetics design and characterization: Bridging experimental and computer-based approaches.

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Alice Romagnoli, Jesmina Rexha, Nunzio Perta, Samuele Di Cristofano, Noemi Borgognoni, Gloria Venturini, Francesco Pignotti, Domenico Raimondo, Tiziana Borsello, Daniele Di Marino
{"title":"Peptidomimetics design and characterization: Bridging experimental and computer-based approaches.","authors":"Alice Romagnoli, Jesmina Rexha, Nunzio Perta, Samuele Di Cristofano, Noemi Borgognoni, Gloria Venturini, Francesco Pignotti, Domenico Raimondo, Tiziana Borsello, Daniele Di Marino","doi":"10.1016/bs.pmbts.2024.07.002","DOIUrl":null,"url":null,"abstract":"<p><p>Peptidomimetics, designed to mimic peptide biological activity with more drug-like properties, are increasingly pivotal in medicinal chemistry. They offer enhanced systemic delivery, cell penetration, target specificity, and protection against peptidases when compared to their native peptide counterparts. Already utilized in treating diverse diseases like neurodegenerative disorders, cancer and infectious diseases, their future in medicine seems bright, with many peptidomimetics in clinical trials or development stages. Peptidomimetics are well-suited for addressing disturbed protein-protein interactions (PPIs), which often underlie various pathologies. Structural biology and computational methods like molecular dynamics simulations facilitate rational design, whereas machine learning algorithms accelerate protein structure prediction, enabling efficient drug development. Experimental validation via various spectroscopic, biophysical, and biochemical assays confirms computational predictions and guides further optimization. Peptidomimetics, with their tailored constrained structures, represent a frontier in drug design focused on targeting PPIs. In this overview, we present a comprehensive landscape of peptidomimetics, encompassing perspectives on involvement in pathologies, chemical strategies, and methodologies for their characterization, spanning in silico, in vitro and in cell approaches. With increasing interest from pharmaceutical sectors, peptidomimetics hold promise for revolutionizing therapeutic approaches, marking a new era of precision drug discovery.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"212 ","pages":"279-327"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.07.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Peptidomimetics, designed to mimic peptide biological activity with more drug-like properties, are increasingly pivotal in medicinal chemistry. They offer enhanced systemic delivery, cell penetration, target specificity, and protection against peptidases when compared to their native peptide counterparts. Already utilized in treating diverse diseases like neurodegenerative disorders, cancer and infectious diseases, their future in medicine seems bright, with many peptidomimetics in clinical trials or development stages. Peptidomimetics are well-suited for addressing disturbed protein-protein interactions (PPIs), which often underlie various pathologies. Structural biology and computational methods like molecular dynamics simulations facilitate rational design, whereas machine learning algorithms accelerate protein structure prediction, enabling efficient drug development. Experimental validation via various spectroscopic, biophysical, and biochemical assays confirms computational predictions and guides further optimization. Peptidomimetics, with their tailored constrained structures, represent a frontier in drug design focused on targeting PPIs. In this overview, we present a comprehensive landscape of peptidomimetics, encompassing perspectives on involvement in pathologies, chemical strategies, and methodologies for their characterization, spanning in silico, in vitro and in cell approaches. With increasing interest from pharmaceutical sectors, peptidomimetics hold promise for revolutionizing therapeutic approaches, marking a new era of precision drug discovery.

拟肽化合物旨在模仿肽的生物活性,具有更多类似药物的特性,在药物化学中的作用日益重要。与原生肽类药物相比,拟肽药物具有更强的全身给药、细胞渗透、靶向特异性和抗肽酶能力。它们已被用于治疗神经退行性疾病、癌症和传染病等多种疾病,在医药领域的前景似乎一片光明,许多拟肽药物正处于临床试验或开发阶段。拟肽药物非常适合解决蛋白质-蛋白质相互作用(PPI)紊乱的问题,而这往往是各种病症的根源。结构生物学和计算方法(如分子动力学模拟)促进了合理设计,而机器学习算法则加快了蛋白质结构预测,从而实现了高效的药物开发。通过各种光谱、生物物理和生化测定进行的实验验证证实了计算预测,并指导进一步优化。拟肽类药物具有量身定制的受限结构,是以 PPIs 为靶点的药物设计的前沿领域。在本综述中,我们将全面介绍拟肽物,包括参与病理的角度、化学策略及其表征方法,涵盖硅学、体外和细胞方法。随着制药行业对多肽仿生学的兴趣与日俱增,多肽仿生学有望彻底改变治疗方法,开创精准药物发现的新纪元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信