Z. Guo, L.T. Lin, Q. Zhao, J. Cui, X. Chi, Z.C. Yang, G. Yan
{"title":"An Electrically Decoupled Lateral-Axis Tuning Fork Gyroscope Operating at Atmospheric Pressure","authors":"Z. Guo, L.T. Lin, Q. Zhao, J. Cui, X. Chi, Z.C. Yang, G. Yan","doi":"10.1109/MEMSYS.2009.4805330","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805330","url":null,"abstract":"In this paper, a bulk micromachined lateral axis TFG (tuning fork gyroscope) with torsional sensing comb capacitors is presented. Both driving and sensing modes of the gyroscope are dominated by slide film air damping, then it can work even at atmosphere. Novel driving comb capacitors are used to electrically decouple the mechanical coupling from sensing mode to driving mode. The process for this gyroscope is also compatible with z-axis gyroscope, which makes it potentially to realize low coast monolithic MIMU (miniature inertial measurement unit) without vacuum packaging. The TFG was fabricated and tested at atmosphere. The sensitivity is 17.8mV/°/s while the nonlinearity is 0.6%. The bias stability is 0.05°/s (1¿) and the noise floor is 0.02°/s/Hz1/2","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134365046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On-Chip Blood Viscometer Towards Point-of-Care Hematological Diagnosis","authors":"H. Zeng, Y. Zhao","doi":"10.1109/MEMSYS.2009.4805363","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805363","url":null,"abstract":"Blood viscosity is an important hematological parameter which is widely used for the diagnosis of atherosclerosis, thrombosis and stroke. Currently used Couette rheometer drives the blood flow at a certain shear rate and measures the viscosity from the resistance toque towards the rotational shaft. Although effective, conventional rheometer is limited due to the complex configuration and the relatively large sample volume. More important, the rotating components hinder the miniaturization for point-of-care and unattended diagnosis. To address this, a microchip is reported for measuring the blood viscosity from the electrical impedances of the blood flowing inside a microchannel. This microdevice is advantageous over rotational viscometers in less sample consumption, rapid response and simple configuration. Considering the vital role of blood viscosity in cardiovascular disorders, this microchip provides a promising start point for on-chip hematological diagnosis.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134576228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ruthenium/Gold Hard-Surface/Low-Resistivity Contact Metallization for Polymer-Encapsulated Microswitch with Stress-Reduced Corrugated SiN/SiO2 Diaphragm","authors":"F. Ke, J. Miao, J. Oberhammer","doi":"10.1109/MEMSYS.2009.4805519","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805519","url":null,"abstract":"This paper presents a RF MEMS switch with a new ruthenium/gold multi-layer contact metallization scheme, which combines the advantages of a hard ruthenium contact surface for high contact reliability and of a low, total contact resistance as typical for gold alloys. The performance of the new concept has been analyzed theoretically and was experimentally verified by contact resistance and life-time characterization of fabricated MEMS switches with conventional Au-Au and with the novel Au/Ru-Ru/Au contact metallization scheme. The switches are based on a low-stress SiN/SiO2 diaphragm which is polymer transfer-bonded and equipped with corrugations for reducing the stiffness and for lowering the stress. The reduced stiffness allows for early encapsulation by clamping the membrane all around its circumference, by maintaining medium actuation voltages.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133687142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface Acoustic Wave-Driven Active Plasmonicsbased on Dynamic Patterning of Nanoparticles in Microfluidic Channels","authors":"Jinjie Shi, Yuebing Zheng, T. Huang","doi":"10.1109/MEMSYS.2009.4805386","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805386","url":null,"abstract":"The nanoparticles redistribution in a microfluidic channel through a dynamic patterning process will locally change the refractive index of the medium around the nanodisk arrays, as well as the LSPR. The dynamic patterning of nanoparticles was achieved by a standing surface acoustic wave (SSAW), from which the acoustic force generated and force the particles to the pressure nodes. The SSAW were formed through two parallel interdigital transducers (IDTs) on a LiNbO3 substrate, on which the gold nanodisk arrays were fabricated through a nanosphere lithography. A PDMS microchannel was aligned with the IDTs and bonded with the substrate to cover the nanodisk arrays. A solution of fluorescent polystyrene beads (diameter: 320 nm) was injected into the channel through a pressure driven flow. When SSAW was on, the original peak (¿=694 nm) is split into two peaks at ¿1= 662 nm and ¿2= 746 nm, respectively.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132567391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation and Selective Retrieval of Micro Droplets in an Array for Micro-PCR using a Glass-Silicon-Glass Chip","authors":"K. Park, H.G. Park, S. Takeuchi","doi":"10.1109/MEMSYS.2009.4805394","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805394","url":null,"abstract":"In this study, we fabricate a glass-silicon-glass chip for the generation of a water-droplet array. Using this array, we succeeded in performing polymerase chain reaction (PCR) within the hundreds of trapped water droplets. Then, we selectively retrieve a specific PCR droplet with a bubble formed by heating an aluminum micro pad with an infrared laser.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133572866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunable Scanning Fiber Optic MEMS-Probe for Endoscopic Optical Coherence Tomography","authors":"K. Aljasem, A. Seifert, H. Zappe","doi":"10.1109/MEMSYS.2009.4805555","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805555","url":null,"abstract":"A novel 3D probe for endoscopic optical coherence tomography (OCT) based on tunable and movable MEMS components is presented. A tunable micro-lens and a 2D scanning micro-mirror are integrated into a probe to enable two-dimensional movement with simultaneous dynamic focusing of a beam onto a target. The tunable system is based on a pneumatically actuated micro-lens for the axial movement of the focus position concomitantly with the depth scan of the OCT, whereas an electrostatically actuated micro-mirror is integrated to obtain the 2D lateral scan of the beam. High resolution imaging at high scan rates is expected for the entire scan depth using this concept. Probe design, assembly, and integration into an OCT system are discussed.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"121 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114522738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stretchable Substrates for the Measurement of Intracellular Calcium Ion Concentration Responding to Mechanical Stress","authors":"Y. Heo, E. Iwase, K. Matsumoto, I. Shimoyama","doi":"10.1109/MEMSYS.2009.4805321","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805321","url":null,"abstract":"This paper presents the design, fabrication, and the characterization of a stretchable substrate, achieving the change of intracellular calcium ion concentration by mechanical stress. We propose the stretchable substrate integrated with the air chambers of the pneumatic actuator. We have measured the areal strain depending on input pressure and the intracellular calcium ion concentration increase in response to the mechanical stress. The present stretchable substrate is able to provide the areal strain of 5.21%~12.3% for the input pressure of 34.5kPa~103kPa. We also verified that the present stretchable substrate is able to stimulate cells by the mechanical stress applied through integrins, showing potential feasible application for monitoring the calcium ion influx caused by the mechanical stress.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"187 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121047903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Garcia-Cordero, F. Benito‐Lopez, D. Diamond, J. Ducrée, A. Ricco
{"title":"Low-Cost Microfluidic Single-Use Valves and On-Board Reagent Storage using Laser-Printer Technology","authors":"J. Garcia-Cordero, F. Benito‐Lopez, D. Diamond, J. Ducrée, A. Ricco","doi":"10.1109/MEMSYS.2009.4805413","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805413","url":null,"abstract":"We report for the first time the laser-printer-based fabrication of vapor-and pressure-resistant microfluidic single-use valves and their implementation on a centrifugal microfluidic \"lab-on-a-disc platform\". As an extension of this technology, we implemented long-term storage of liquids for up to one month with no signs of evaporation. This simple technology is compatible with a range of polymer microfabrication technologies and should facilitate the design and fabrication of fully integrated and automated lab-on-a-chip cartridges that require pressure-resistant valves or long-term reagent storage.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116586119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A New Micro-Four-Point Probe Design for Various Applications","authors":"Ji-Kwan Kim, Yan Zhang, Dong-weon Lee","doi":"10.1109/MEMSYS.2009.4805325","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805325","url":null,"abstract":"In this paper, we proposed a new micro-four-point-probe (¿4PP) with sharp tips arranged in squire and spacing 20¿m. The ¿4PP consists of a main cantilever and four sub-cantilevers. A thermal actuator based on the bimorph effect is integrated on each sub-cantilever. The four-terminal configuration affords to versatile applications to measure electrical properties. Alternatively, the modified ¿4PP structure can be also used as a micro-gripper to move micro/nano-objects. A spring constant of the fabricated sub-cantilevers is less than 1.5N/m which is suitable for fragile materials. Resistivity measurement on a metal particle is successfully performed using ¿4PP.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"317 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115444621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taik-Min Lee, Hyun-Cheol Choi, J. Noh, Dong-Soo Kim
{"title":"EL Display Printed on Curved Surface","authors":"Taik-Min Lee, Hyun-Cheol Choi, J. Noh, Dong-Soo Kim","doi":"10.1109/MEMSYS.2009.4805540","DOIUrl":"https://doi.org/10.1109/MEMSYS.2009.4805540","url":null,"abstract":"This paper presents the electro-luminescence (EL) display lamp which is patterned on a curved surface by the pad printing method. The EL display lamp consists of 5 layers: Bottom electrode; Dielectric layer; Phosphor; Transparent electrode; Bus electrode. For proper pad printing, the ink of each layer was formulated and the pad printing condition was controlled. A PEN film was used first in order to realize the pad printing process condition of each layer. Finally, the EL display lamp was printed on a dish, which has a radius of curvature 80mm.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116554772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}