J. Garcia-Cordero, F. Benito‐Lopez, D. Diamond, J. Ducrée, A. Ricco
{"title":"Low-Cost Microfluidic Single-Use Valves and On-Board Reagent Storage using Laser-Printer Technology","authors":"J. Garcia-Cordero, F. Benito‐Lopez, D. Diamond, J. Ducrée, A. Ricco","doi":"10.1109/MEMSYS.2009.4805413","DOIUrl":null,"url":null,"abstract":"We report for the first time the laser-printer-based fabrication of vapor-and pressure-resistant microfluidic single-use valves and their implementation on a centrifugal microfluidic \"lab-on-a-disc platform\". As an extension of this technology, we implemented long-term storage of liquids for up to one month with no signs of evaporation. This simple technology is compatible with a range of polymer microfabrication technologies and should facilitate the design and fabrication of fully integrated and automated lab-on-a-chip cartridges that require pressure-resistant valves or long-term reagent storage.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We report for the first time the laser-printer-based fabrication of vapor-and pressure-resistant microfluidic single-use valves and their implementation on a centrifugal microfluidic "lab-on-a-disc platform". As an extension of this technology, we implemented long-term storage of liquids for up to one month with no signs of evaporation. This simple technology is compatible with a range of polymer microfabrication technologies and should facilitate the design and fabrication of fully integrated and automated lab-on-a-chip cartridges that require pressure-resistant valves or long-term reagent storage.